論文の概要: Second-Order Tensorial Partial Differential Equations on Graphs
- arxiv url: http://arxiv.org/abs/2509.02015v1
- Date: Tue, 02 Sep 2025 07:01:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.930821
- Title: Second-Order Tensorial Partial Differential Equations on Graphs
- Title(参考訳): グラフ上の二次テンソル部分微分方程式
- Authors: Aref Einizade, Fragkiskos D. Malliaros, Jhony H. Giraldo,
- Abstract要約: 本稿では,2階連続積グラフニューラルネットワークのための理論的基盤となる第1のフレームワークを提案する。
提案手法は,カルト系積グラフにおけるコサイン核の分離性を利用して,高頻度情報を自然に保存しつつ,効率的なスペクトル分解を実現する。
- 参考スコア(独自算出の注目度): 13.421159402806675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing data that lies on multiple interacting (product) graphs is increasingly important in practical applications, yet existing methods are mostly restricted to discrete graph filtering. Tensorial partial differential equations on graphs (TPDEGs) offer a principled framework for modeling such multidomain data in a continuous setting. However, current continuous approaches are limited to first-order derivatives, which tend to dampen high-frequency signals and slow down information propagation. This makes these TPDEGs-based approaches less effective for capturing complex, multi-scale, and heterophilic structures. In this paper, we introduce second-order TPDEGs (So-TPDEGs) and propose the first theoretically grounded framework for second-order continuous product graph neural networks. Our approach leverages the separability of cosine kernels in Cartesian product graphs to implement efficient spectral decomposition, while naturally preserving high-frequency information. We provide rigorous theoretical analyses of stability under graph perturbations and over-smoothing behavior regarding spectral properties. Our theoretical results establish a robust foundation for advancing continuous graph learning across multiple practical domains.
- Abstract(参考訳): 複数の相互作用する(製品)グラフ上のデータを処理することは、実用アプリケーションではますます重要になっているが、既存の手法は主に離散グラフフィルタリングに限られている。
グラフ上のテンソル偏微分方程式(TPDEG)は、そのようなマルチドメインデータを連続的にモデル化するための原則的なフレームワークを提供する。
しかし、現在の連続的なアプローチは1次微分に限られており、これは高周波信号を減衰させ、情報の伝達を遅くする傾向がある。
これにより、これらのPDEGsベースのアプローチは、複雑でマルチスケールでヘテロ親和性のある構造を捉えるのに効果が低下する。
本稿では,2階連続積グラフニューラルネットワークのための理論的基盤となる第1のフレームワークを提案する。
提案手法は,カルト系積グラフにおけるコサイン核の分離性を利用して,高頻度情報を自然に保存しつつ,効率的なスペクトル分解を実現する。
グラフ摂動下での安定性の厳密な理論的解析とスペクトル特性に関する過度に平滑な挙動について述べる。
我々の理論的結果は、複数の実践領域にまたがる連続グラフ学習を促進するための堅牢な基盤を確立する。
関連論文リスト
- Stochastic Variance-Reduced Iterative Hard Thresholding in Graph Sparsity Optimization [0.626226809683956]
グラデーションに基づくグラフ空間幅最適化法として,グラフRG-IHTとグラフSG-IHTの2つの手法を提案する。
我々は,手法が勾配に基づく枠組みを楽しむことを示す理論解析の一般性を示す。
論文 参考訳(メタデータ) (2024-07-24T03:26:26Z) - Continuous Product Graph Neural Networks [5.703629317205571]
複数のグラフ上に定義されたマルチドメインデータは、計算機科学の実践的応用において大きな可能性を秘めている。
TPDEGの自然な解として現れるCITRUS(Continuous Product Graph Neural Networks)を紹介する。
我々は、CITRUSをよく知られた交通・時間天気予報データセットで評価し、既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-29T08:36:09Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
本研究は,有向グラフと重み付きグラフを用いて,m文を一般化した伝播を定義することによって,従来のメッセージパッシング(中心からグラフ学習)の限界に対処する。
この分野ではじめて、データセットにおける学習された伝播パターンの予備的な探索を含む。
論文 参考訳(メタデータ) (2024-02-13T14:13:17Z) - Fine-tuning Graph Neural Networks by Preserving Graph Generative
Patterns [13.378277755978258]
プレトレーニンググラフと下流グラフの間の構造的ばらつきは,バニラ微調整戦略を用いた場合の転送可能性を大幅に制限することを示す。
下流グラフの生成パターンを保存するためにG-Tuningを提案する。
G-Tuningはドメイン内およびドメイン外移行学習実験において平均0.5%と2.6%の改善を示している。
論文 参考訳(メタデータ) (2023-12-21T05:17:10Z) - Supercharging Graph Transformers with Advective Diffusion [28.40109111316014]
本稿では,この課題に対処するために,物理に着想を得たグラフトランスモデルであるAdvDIFFormerを提案する。
本稿では,AdvDIFFormerが位相シフトによる一般化誤差を制御できることを示す。
経験的に、このモデルは情報ネットワーク、分子スクリーニング、タンパク質相互作用の様々な予測タスクにおいて優位性を示す。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - A continuum limit for the PageRank algorithm [1.2891210250935146]
半教師あり、教師なしの機械学習手法は、しばしばデータモデリングにグラフに依存する。
本稿では,有向グラフ上での学習アルゴリズムの連続限界を厳密に研究するための新しいフレームワークを提案する。
正規化グラフの一種であるラプラシアンを含む有向グラフ上の数値スキームとして解釈する方法を示す。
論文 参考訳(メタデータ) (2020-01-24T12:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。