論文の概要: Exploring Diffusion Models for Generative Forecasting of Financial Charts
- arxiv url: http://arxiv.org/abs/2509.02308v1
- Date: Tue, 02 Sep 2025 13:31:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:04.043135
- Title: Exploring Diffusion Models for Generative Forecasting of Financial Charts
- Title(参考訳): ファイナンシャルチャートの生成予測のための拡散モデルの検討
- Authors: Taegyeong Lee, Jiwon Park, Kyunga Bang, Seunghyun Hwang, Ung-Jin Jang,
- Abstract要約: 本稿では,時系列データを単一の画像パターンとして扱うことによって,テキスト・ツー・イメージ・モデルを活用する新しいアプローチを提案する。
そこで本研究では,生成したグラフ画像と地上の真理画像とを簡易に評価する手法を提案する。
- 参考スコア(独自算出の注目度): 6.103865584585002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in generative models have enabled significant progress in tasks such as generating and editing images from text, as well as creating videos from text prompts, and these methods are being applied across various fields. However, in the financial domain, there may still be a reliance on time-series data and a continued focus on transformer models, rather than on diverse applications of generative models. In this paper, we propose a novel approach that leverages text-to-image model by treating time-series data as a single image pattern, thereby enabling the prediction of stock price trends. Unlike prior methods that focus on learning and classifying chart patterns using architectures such as ResNet or ViT, we experiment with generating the next chart image from the current chart image and an instruction prompt using diffusion models. Furthermore, we introduce a simple method for evaluating the generated chart image against ground truth image. We highlight the potential of leveraging text-to-image generative models in the financial domain, and our findings motivate further research to address the current limitations and expand their applicability.
- Abstract(参考訳): 生成モデルの最近の進歩により、テキストからの画像の生成や編集、テキストプロンプトからの動画作成といったタスクが大幅に進歩し、様々な分野に適用されている。
しかし、金融分野では、生成モデルの多様な応用よりも、時系列データへの依存とトランスフォーマーモデルへの継続的な注力がまだあるかもしれない。
本稿では,時系列データを単一の画像パターンとして扱うことによって,テキスト・ツー・イメージ・モデルを活用する新しいアプローチを提案する。
ResNet や ViT などのアーキテクチャを用いたチャートパターンの学習と分類に重点を置く従来の手法とは異なり,我々は,現行のチャート画像から次のチャート画像を生成し,拡散モデルを用いて命令プロンプトを作成する実験を行った。
さらに,生成したグラフ画像と地上の真理画像とを簡易に評価する手法を提案する。
我々は,金融分野におけるテキスト・ツー・イメージ生成モデルを活用する可能性を強調し,現状の限界に対処し,適用性を高めるためのさらなる研究を動機付けている。
関連論文リスト
- EditAR: Unified Conditional Generation with Autoregressive Models [58.093860528672735]
本稿では,条件付き画像生成タスクのための単一の統合自己回帰フレームワークであるEditARを提案する。
このモデルは、画像と命令の両方を入力として取り、バニラの次のパラダイムで編集された画像トークンを予測する。
確立されたベンチマークにおいて,様々なタスクにまたがる実効性を評価し,様々なタスク固有の手法に対する競争性能を示す。
論文 参考訳(メタデータ) (2025-01-08T18:59:35Z) - Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models [54.052963634384945]
画像再生タスクを導入し,テキスト・ツー・イメージ・モデルの評価を行う。
我々はGPT4Vを用いて参照画像とT2Iモデルのテキスト入力のギャップを埋める。
また、生成した画像の品質を高めるために、ImageRepainterフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T13:52:43Z) - MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models [34.611309081801345]
大規模な拡散ベースのテキスト・ツー・イメージ(T2I)モデルでは、テキスト・ツー・イメージ生成に印象的な生成能力がある。
本稿では,最小限の計算量で新しいタスクにまたがって生成モデルを拡張するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-15T17:55:56Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
テキスト・ツー・イメージ生成(テキスト・トゥ・イメージ・ジェネレーション、英: Text-to-image Generation、TTI)とは、テキスト入力を処理し、テキスト記述に基づいて高忠実度画像を生成するモデルである。
拡散モデル (diffusion model) は、繰り返しステップによるノイズの体系的導入を通じて画像の生成に使用される顕著な生成モデルである。
大規模モデルの時代、モデルサイズを拡大し、大規模言語モデルとの統合により、TTIモデルの性能がさらに向上した。
論文 参考訳(メタデータ) (2023-09-02T03:27:20Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Diffusion idea exploration for art generation [0.10152838128195467]
拡散モデルは最近、クロスモーダルデータを用いた画像生成タスクにおいて、他の生成モデルよりも優れています。
このタスクの新たな画像生成の初期実験は、有望な質的結果を示した。
論文 参考訳(メタデータ) (2023-07-11T02:35:26Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - Textile Pattern Generation Using Diffusion Models [0.0]
本研究は,テクスト指導による織物パターン生成のための微調整拡散モデルを提案する。
提案した微調整拡散モデルは,テキストガイダンスによる織物パターン生成におけるパターン品質と効率の観点から,ベースラインモデルより優れる。
論文 参考訳(メタデータ) (2023-04-02T12:12:24Z) - Implementing and Experimenting with Diffusion Models for Text-to-Image
Generation [0.0]
DALL-E 2 と Imagen という2つのモデルでは、画像の単純なテキスト記述から高画質の画像を生成できることが示されている。
テキスト・ツー・イメージのモデルは、トレーニングに必要な膨大な計算リソースと、インターネットから収集された巨大なデータセットを扱う必要がある。
この論文は、これらのモデルが使用するさまざまなアプローチとテクニックをレビューし、それから、テキスト・ツー・イメージ・モデルの独自の実装を提案することで貢献する。
論文 参考訳(メタデータ) (2022-09-22T12:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。