論文の概要: Federated learning over physical channels: adaptive algorithms with near-optimal guarantees
- arxiv url: http://arxiv.org/abs/2509.02538v1
- Date: Tue, 02 Sep 2025 17:40:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:04.128678
- Title: Federated learning over physical channels: adaptive algorithms with near-optimal guarantees
- Title(参考訳): 物理チャネル上のフェデレーション学習--準最適保証付き適応アルゴリズム
- Authors: Rui Zhang, Wenlong Mou,
- Abstract要約: 連合学習では、物理チャネルを介して情報を空気中に伝達することにより、通信コストを著しく削減することができる。
本稿では,チャネルノイズとハードウェア制約を考慮し,物理チャネル上で実装可能な適応型連邦勾配降下法(SGD)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 5.881472978395745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In federated learning, communication cost can be significantly reduced by transmitting the information over the air through physical channels. In this paper, we propose a new class of adaptive federated stochastic gradient descent (SGD) algorithms that can be implemented over physical channels, taking into account both channel noise and hardware constraints. We establish theoretical guarantees for the proposed algorithms, demonstrating convergence rates that are adaptive to the stochastic gradient noise level. We also demonstrate the practical effectiveness of our algorithms through simulation studies with deep learning models.
- Abstract(参考訳): 連合学習では、物理チャネルを介して情報を空気中に伝達することにより、通信コストを著しく削減することができる。
本稿では,物理チャネル上で実装可能な適応型確率勾配勾配法(SGD)アルゴリズムを提案し,チャネルノイズとハードウェアの制約を考慮に入れた。
提案アルゴリズムの理論的保証を確立し,確率勾配雑音レベルに適応する収束率を示す。
また,ディープラーニングモデルを用いたシミュレーション研究を通じて,アルゴリズムの有効性を実証する。
関連論文リスト
- Over-the-Air Federated Learning via Weighted Aggregation [9.043019524847491]
本稿では, オーバー・ザ・エア計算を利用した新しいフェデレーション学習手法を提案する。
このスキームの新たな特徴は、アグリゲーション中に適応重みを用いるという提案である。
提案手法の収束を導出する数学的手法を提案する。
論文 参考訳(メタデータ) (2024-09-12T08:07:11Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Training neural networks with structured noise improves classification and generalization [0.0]
ノイズの多いトレーニングデータに構造を加えることで,アルゴリズムの性能が大幅に向上することを示す。
また,Hebbian Unlearning(ヘビアン・アンラーニング・ルール)と呼ばれる規則は,雑音が最大値である場合のトレーニング・ウィズ・ノイズ・アルゴリズムと一致することを証明した。
論文 参考訳(メタデータ) (2023-02-26T22:10:23Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Communication-Efficient Stochastic Zeroth-Order Optimization for
Federated Learning [28.65635956111857]
フェデレートラーニング(FL)は、エッジデバイスがプライベートデータを共有せずに、グローバルモデルを協調的にトレーニングすることを可能にする。
FLの訓練効率を向上させるため,一階計算から一階法まで,様々なアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2022-01-24T08:56:06Z) - Self-Guided Quantum State Learning for Mixed States [7.270980742378388]
我々のアルゴリズムの健全な特徴は、非忠実次元$d$状態における効率的な$O left(d3 right)$後処理である。
測定ノイズに対する高いレジリエンスは、ノイズの多い中間スケール量子アプリケーションに我々のアルゴリズムを適合させる。
論文 参考訳(メタデータ) (2021-06-11T04:40:26Z) - Fast Convergence Algorithm for Analog Federated Learning [30.399830943617772]
無線チャネル上での効率的なアナログフェデレーション学習のためのAirCompベースのFedSplitアルゴリズムを提案する。
提案アルゴリズムは, 目的関数が強く凸かつ滑らかであるという仮定の下で, 最適解に線形収束することを示す。
我々のアルゴリズムは、他のベンチマークFLアルゴリズムと比較して、より高速な収束を伴う不条件問題に対して、より堅牢であることが理論的および実験的に検証されている。
論文 参考訳(メタデータ) (2020-10-30T10:59:49Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。