論文の概要: AdaGrad Meets Muon: Adaptive Stepsizes for Orthogonal Updates
- arxiv url: http://arxiv.org/abs/2509.02981v1
- Date: Wed, 03 Sep 2025 03:42:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.403484
- Title: AdaGrad Meets Muon: Adaptive Stepsizes for Orthogonal Updates
- Title(参考訳): AdaGradとMuon: 直交アップデートのための適応的なステップサイズ
- Authors: Minxin Zhang, Yuxuan Liu, Hayden Schaeffer,
- Abstract要約: 我々は、標準ベースの更新とaGradタイプのステップを組み合わせた新しい適応型更新AdaGOを提案する。
AdaGOは更新の直交性を保持しており、これはスペクトル降下と解釈できる。
- 参考スコア(独自算出の注目度): 5.049533819651459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently proposed Muon optimizer updates weight matrices via orthogonalized momentum and has demonstrated strong empirical success in large language model training. However, it remains unclear how to determine the learning rates for such orthogonalized updates. AdaGrad, by contrast, is a widely used adaptive method that scales stochastic gradients by accumulated past gradients. We propose a new algorithm, AdaGO, which combines a norm-based AdaGrad-type stepsize with an orthogonalized update direction, bringing together the benefits of both approaches. Unlike other adaptive variants of Muon, AdaGO preserves the orthogonality of the update direction, which can be interpreted as a spectral descent direction, while adapting the stepsizes to the optimization landscape by scaling the direction with accumulated past gradient norms. The implementation of AdaGO requires only minimal modification to Muon, with a single additional scalar variable, the accumulated squared gradient norms, to be computed, making it computationally and memory efficient. Optimal theoretical convergence rates are established for nonconvex functions in both stochastic and deterministic settings under standard smoothness and unbiased bounded-variance noise assumptions. Empirical results on CIFAR-10 classification and function regression demonstrate that AdaGO outperforms Muon and Adam.
- Abstract(参考訳): 最近提案されたMuonオプティマイザは、直交運動量によって重み行列を更新し、大規模言語モデルトレーニングにおいて強い経験的成功を示している。
しかし、このような直交的な更新の学習率を決定する方法は不明である。
対照的に、AdaGradは、蓄積された過去の勾配によって確率勾配をスケールする広く使われている適応法である。
我々は,標準ベースのAdaGrad型ステップサイズと直交した更新方向を組み合わせた新しいアルゴリズムAdaGOを提案する。
他の適応的なムオンの変種とは異なり、AdaGOは更新方向の直交性を保持しており、これはスペクトル降下方向と解釈できる。
AdaGOの実装は、単一のスカラー変数である累積2乗勾配ノルムを計算し、計算とメモリ効率を高めるために、ミューオンへの最小限の変更しか必要としない。
標準的な滑らかさと非バイアス付き有界分散雑音仮定の下で、確率的および決定論的設定の非凸関数に対して最適理論収束速度が確立される。
CIFAR-10の分類と機能回帰に関する実証結果は、AdaGOがMuonとAdamより優れていることを示している。
関連論文リスト
- Improving Adaptive Moment Optimization via Preconditioner Diagonalization [11.01832755213396]
提案手法は,現代適応法の収束速度を大幅に向上させることができることを示す。
LLaMAのような大きな言語モデルでは、ベースラインであるAdamと比較して2倍のスピードアップが達成できます。
論文 参考訳(メタデータ) (2025-02-11T11:48:04Z) - ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
我々は, 高速(指数率), ab initio(超自由)勾配に基づく適応法を提案する。
本手法の主な考え方は,状況認識による$alphaの適応である。
これは任意の次元 n の問題に適用でき、線型にしかスケールできない。
論文 参考訳(メタデータ) (2023-09-12T14:36:13Z) - A Control Theoretic Framework for Adaptive Gradient Optimizers in
Machine Learning [0.6526824510982802]
適応勾配法はディープニューラルネットワークの最適化に人気がある。
最近の例にはAdaGradとAdamがある。
我々は適応的勾配法のための汎用的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-06-04T17:55:33Z) - The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded
Gradients and Affine Variance [46.15915820243487]
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
論文 参考訳(メタデータ) (2022-02-11T17:37:54Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
本研究では,行列逆変換などの問題に対して,適応的なステップサイズを持つ勾配勾配の局所収束性を確立する。
これらの一階最適化法は線形あるいは線形収束を実現することができることを示す。
論文 参考訳(メタデータ) (2021-12-30T00:50:30Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
本稿では,Adamにおける2乗勾配のランニング平均を重み付き平均に置き換える適応学習率の原理を提案する。
これにより、より高速な適応が可能となり、より望ましい経験的収束挙動がもたらされる。
論文 参考訳(メタデータ) (2020-06-21T21:47:43Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
我々は、勾配収束法を期待する適応勾配法を証明した。
解析では、非理解勾配境界の最適化において、より適応的な勾配法に光を当てた。
論文 参考訳(メタデータ) (2018-08-16T20:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。