論文の概要: RecBase: Generative Foundation Model Pretraining for Zero-Shot Recommendation
- arxiv url: http://arxiv.org/abs/2509.03131v1
- Date: Wed, 03 Sep 2025 08:33:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.464281
- Title: RecBase: Generative Foundation Model Pretraining for Zero-Shot Recommendation
- Title(参考訳): RecBase: ゼロショットレコメンデーションのためのジェネレーティブファウンデーションモデル
- Authors: Sashuai Zhou, Weinan Gan, Qijiong Liu, Ke Lei, Jieming Zhu, Hai Huang, Yan Xia, Ruiming Tang, Zhenhua Dong, Zhou Zhao,
- Abstract要約: RecBaseは、レコメンデーション指向の目的によって事前訓練されたドメインに依存しない基礎モデルである。
アイテムを階層的な概念識別子にエンコードする統一されたアイテムトークンを導入します。
我々のモデルは、ゼロショットおよびクロスドメインレコメンデーションタスクにおいて、LLMのベースラインの最大7Bパラメータのパフォーマンスを一致または超過します。
- 参考スコア(独自算出の注目度): 78.01030342481246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in LLM-based recommendation have shown promise, yet their cross-domain generalization is hindered by a fundamental mismatch between language-centric pretraining and the recommendation task. Existing methods, relying on language-level knowledge, fail to capture dynamic, item-level user interests across domains. To bridge this gap, we propose RecBase, a domain-agnostic foundational model pretrained with a recommendation-oriented objective. RecBase leverages a large-scale, heterogeneous, cross-domain corpus with unified textual representations and feature mappings to enhance cross-domain generalization. To further align item semantics across domains, we introduce a unified item tokenizer that encodes items into hierarchical concept identifiers, enabling structured representation and efficient vocabulary sharing. The model is trained using an autoregressive objective to capture complex item-level sequential patterns. On eight real-world datasets, our 1.5B-parameter model matches or surpasses the performance of LLM baselines up to 7B parameters in zero-shot and cross-domain recommendation tasks.
- Abstract(参考訳): LLMに基づくレコメンデーションの最近の進歩は、将来性を示しているが、言語中心の事前学習とレコメンデーションタスクの根本的なミスマッチによって、ドメイン間の一般化が妨げられている。
既存のメソッドは言語レベルの知識に依存しており、動的でアイテムレベルのユーザ関心をドメイン間で捉えることができません。
このギャップを埋めるため,レコメンデーション指向の目的を持ったドメインに依存しない基礎モデルRecBaseを提案する。
RecBaseは、大規模で異質なクロスドメインコーパスに統一されたテキスト表現と機能マッピングを活用し、クロスドメインの一般化を強化する。
ドメイン間のアイテムセマンティクスをさらに整合させるため、アイテムを階層的な概念識別子にエンコードし、構造化された表現と効率的な語彙共有を可能にする、統一されたアイテムトークンを導入している。
モデルは、複雑なアイテムレベルのシーケンシャルパターンをキャプチャするために、自動回帰オブジェクトを使用してトレーニングされる。
8つの実世界のデータセット上では、1.5Bパラメーターモデルがゼロショットおよびクロスドメインレコメンデーションタスクにおいて、LLMのベースラインの最大7Bパラメータのパフォーマンスに一致または超える。
関連論文リスト
- FuDoBa: Fusing Document and Knowledge Graph-based Representations with Bayesian Optimisation [43.56253799373878]
本稿では,LLMに基づく埋め込みとドメイン固有の構造化知識を統合したベイズ最適化に基づくFuDoBaを紹介する。
この融合は、訓練の複雑さを減らし、解釈可能な早期融合重みを生み出すとともに、低次元のタスク関連表現を生成する。
2つの領域における6つのデータセットに対するアプローチの有効性を実証し、提案した表現学習アプローチが、プロプライエタリなLCMベースの埋め込みベースラインでのみ生成されるものと同程度に、あるいは超えていることを示す。
論文 参考訳(メタデータ) (2025-07-09T07:49:55Z) - LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation [49.78419076215196]
シーケンスレコメンデーションは、類似したユーザやアイテムの履歴行動から協調フィルタリング(CF)信号をモデル化することで、ユーザの将来のインタラクションを予測することを目的としている。
従来のシーケンシャルなレコメンダは、高次の共起パターンを通じてCF信号をキャプチャするIDベースの埋め込みに依存している。
大規模言語モデル(LLM)の最近の進歩は、テキスト記述からアイテム表現を導出するテキストベースのレコメンデーションアプローチを動機付けている。
理想的な埋め込みモデルは、ドメイン内およびドメイン外のレコメンデーションパフォーマンスを改善するために、CF信号とリッチなセマンティック表現をシームレスに統合すべきである、と我々は主張する。
論文 参考訳(メタデータ) (2025-06-16T13:27:06Z) - RecGPT: A Foundation Model for Sequential Recommendation [16.464972558861497]
我々は、真にゼロショットの一般化機能を実現するための逐次レコメンデーションのための基礎モデルを開発する。
提案手法は,テキスト機能のみからアイテム表現を導出することで,既存のIDベースの手法から逸脱する。
我々は、不均一なテキスト記述を標準化された離散トークンに変換するFinite Scalar Quantizationと統合されたアイテムトークン化を導入する。
論文 参考訳(メタデータ) (2025-06-06T17:53:02Z) - LLM-RecG: A Semantic Bias-Aware Framework for Zero-Shot Sequential Recommendation [5.512301280728178]
ゼロショットクロスドメインシーケンシャルレコメンデーション(ZCDSR)は、追加のトレーニングや微調整なしで、目に見えないドメインでの予測を可能にする。
大規模言語モデル(LLM)の最近の進歩は、ドメイン間の知識伝達を容易にすることで、ZCDSRを大幅に強化している。
本稿では,アイテムレベルとシーケンシャルレベルの両方において,ドメイン間のアライメントを改善するセマンティックバイアス対応フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-31T15:43:21Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
タスク指向コンポジションセマンティックパーシング(TCSP)は複雑なネストされたユーザクエリを処理する。
本報告では,TCSPの変換可能なクロスランガルとクロスドメインを比較した。
本稿では,フラット化意図とスロット表現を別々に予測し,両方の予測タスクをシーケンスラベリング問題にキャストすることを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:40:05Z) - Meta-Learning for Domain Generalization in Semantic Parsing [124.32975734073949]
セマンティック解析のためにゼロショットドメインをターゲットにしたメタラーニングフレームワークを使用する。
ゼロショット解析の仮想トレインと非結合領域からのテストセットをシミュレートするモデル非依存のトレーニングアルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-10-22T19:00:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。