論文の概要: Teacher-Student Model for Detecting and Classifying Mitosis in the MIDOG 2025 Challenge
- arxiv url: http://arxiv.org/abs/2509.03614v1
- Date: Wed, 03 Sep 2025 18:08:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:09.932809
- Title: Teacher-Student Model for Detecting and Classifying Mitosis in the MIDOG 2025 Challenge
- Title(参考訳): MIDOG 2025チャレンジにおけるミトコンドリアの検出と分類のための教師・学生モデル
- Authors: Seungho Choe, Xiaoli Qin, Abubakr Shafique, Amanda Dy, Dimitri Androutsos, Susan Done, April Khademi,
- Abstract要約: 有糸分裂の数字を数えるのは病理学者にとって時間集約的であり、サーバ間の変動につながる。
人工知能(AI)は、決定整合性を維持しながら、ミオティックフィギュアを自動的に検出することで解決を約束する。
我々は,ミトーシス検出を画素レベルのセグメンテーションとして定式化し,ミトーシス検出と分類を同時に扱う教師学生モデルを提案する。
- 参考スコア(独自算出の注目度): 0.5794811300616634
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Counting mitotic figures is time-intensive for pathologists and leads to inter-observer variability. Artificial intelligence (AI) promises a solution by automatically detecting mitotic figures while maintaining decision consistency. However, AI tools are susceptible to domain shift, where a significant drop in performance can occur due to differences in the training and testing sets, including morphological diversity between organs, species, and variations in staining protocols. Furthermore, the number of mitoses is much less than the count of normal nuclei, which introduces severely imbalanced data for the detection task. In this work, we formulate mitosis detection as a pixel-level segmentation and propose a teacher-student model that simultaneously addresses mitosis detection (Track 1) and atypical mitosis classification (Track 2). Our method is based on a UNet segmentation backbone that integrates domain generalization modules, namely contrastive representation learning and domain-adversarial training. A teacher-student strategy is employed to generate pixel-level pseudo-masks not only for annotated mitoses and hard negatives but also for normal nuclei, thereby enhancing feature discrimination and improving robustness against domain shift. For the classification task, we introduce a multi-scale CNN classifier that leverages feature maps from the segmentation model within a multi-task learning paradigm. On the preliminary test set, the algorithm achieved an F1 score of 0.7660 in Track 1 and balanced accuracy of 0.8414 in Track 2, demonstrating the effectiveness of integrating segmentation-based detection and classification into a unified framework for robust mitosis analysis.
- Abstract(参考訳): 有糸分裂の数字を数えるのは病理学者にとって時間集約的であり、サーバ間の変動につながる。
人工知能(AI)は、決定整合性を維持しながら、ミオティックフィギュアを自動的に検出することで解決を約束する。
しかし、AIツールは、臓器、種、染色プロトコルのバリエーションなど、トレーニングセットとテストセットの違いによってパフォーマンスが大幅に低下する、ドメインシフトの影響を受けやすい。
さらに、ミトース数は通常の原子核の数よりもはるかに少なく、検出タスクに対して非常に不均衡なデータをもたらす。
本研究では,ミトーシス検出をピクセルレベルのセグメンテーションとして定式化し,ミトーシス検出(Track 1)と非定型ミトーシス分類(Track2)を同時に扱う教師・学生モデルを提案する。
提案手法は,ドメイン一般化モジュール,すなわちコントラスト表現学習とドメイン・アドバイザリ・トレーニングを統合したUNetセグメンテーション・バックボーンに基づいている。
教師学生戦略を用いて、アノテーションミトースやハードネガティブだけでなく、正常核に対してもピクセルレベルの擬似マスクを生成することにより、特徴の識別を向上し、ドメインシフトに対する堅牢性を向上させる。
分類タスクでは,マルチタスク学習パラダイム内のセグメンテーションモデルから特徴写像を利用するマルチスケールCNN分類器を導入する。
予備試験では,トラック1のF1スコア0.7660,トラック2の精度0.8414を達成した。
関連論文リスト
- MitoDetect++: A Domain-Robust Pipeline for Mitosis Detection and Atypical Subtyping [5.8892536770897665]
MitoDetect++はMIDOG 2025チャレンジ用に設計された統合ディープラーニングパイプラインである。
検出には、EfficientNetV2-LをバックボーンとするU-Netベースのエンコーダデコーダアーキテクチャを用いる。
分類には、Lo-Rank Adaptation (LoRA) を用いて効率よく微調整されたVirchow2視覚変換器を用いて、資源消費を最小限に抑える。
論文 参考訳(メタデータ) (2025-08-28T18:19:51Z) - Uncertainty-aware Cross-training for Semi-supervised Medical Image Segmentation [45.96892342675963]
半教師型医療画像(UC-Seg)のための不確実性を考慮したクロストレーニングフレームワークを提案する。
本手法は,他の最先端半教師付き手法と比較して,セグメンテーション精度と一般化性能に優れる。
論文 参考訳(メタデータ) (2025-08-12T15:28:10Z) - AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification [51.525891360380285]
AHDMILは非対称な階層的蒸留マルチインスタンス学習フレームワークである。
2段階のトレーニングプロセスを通じて、無関係なパッチを排除します。
分類性能と推論速度の両方において、従来の最先端手法を一貫して上回っている。
論文 参考訳(メタデータ) (2025-08-07T07:47:16Z) - Divide and Conquer: Grounding a Bleeding Areas in Gastrointestinal Image with Two-Stage Model [7.1083241462091165]
本研究では,従来のマルチタスク学習モデルが生み出す課題に対処するために,分類と接地を分離する2段階の枠組みを提案する。
実験結果から,分類精度とセグメンテーション精度が有意に向上した。
論文 参考訳(メタデータ) (2024-12-21T18:18:12Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。