論文の概要: Mentalic Net: Development of RAG-based Conversational AI and Evaluation Framework for Mental Health Support
- arxiv url: http://arxiv.org/abs/2509.04456v1
- Date: Wed, 27 Aug 2025 03:44:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-14 20:41:04.875744
- Title: Mentalic Net: Development of RAG-based Conversational AI and Evaluation Framework for Mental Health Support
- Title(参考訳): メンタルネット: メンタルヘルス支援のためのRAGベースの会話型AIと評価フレームワークの開発
- Authors: Anandi Dutta, Shivani Mruthyunjaya, Jessica Saddington, Kazi Sifatul Islam,
- Abstract要約: メンタルネット会話AIはBERTスコアが0.898であり、他の評価指標は満足のいく範囲内にある。
我々は,このようなトランスフォーメーション技術を開発する上で,人間-イン-ザ-ループアプローチと長期的かつ責任ある戦略を提唱する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) has unlocked boundless possibilities, along with significant challenges. In response, we developed a mental health support chatbot designed to augment professional healthcare, with a strong emphasis on safe and meaningful application. Our approach involved rigorous evaluation, covering accuracy, empathy, trustworthiness, privacy, and bias. We employed a retrieval-augmented generation (RAG) framework, integrated prompt engineering, and fine-tuned a pre-trained model on novel datasets. The resulting system, Mentalic Net Conversational AI, achieved a BERT Score of 0.898, with other evaluation metrics falling within satisfactory ranges. We advocate for a human-in-the-loop approach and a long-term, responsible strategy in developing such transformative technologies, recognizing both their potential to change lives and the risks they may pose if not carefully managed.
- Abstract(参考訳): 大きな言語モデル(LLM)の出現は、大きな課題とともに、無限の可能性の解放につながった。
そこで我々は,安全で有意義な応用を強く重視して,専門的医療を強化するためのメンタルヘルスサポートチャットボットを開発した。
私たちのアプローチには厳格な評価、正確さ、共感、信頼性、プライバシー、バイアスが含まれていました。
我々は、検索強化世代(RAG)フレームワーク、統合プロンプトエンジニアリング、および新規データセットの事前学習モデルを微調整した。
その結果得られたMentalic Net Conversational AIはBERTスコア0.898を達成した。
我々は、人道的なアプローチと、このような変革的技術を開発するための長期的な責任ある戦略を提唱し、彼らの生命を変える可能性と、慎重に管理しなければ生じる可能性のあるリスクの両方を認識します。
関連論文リスト
- A Comprehensive Review of Datasets for Clinical Mental Health AI Systems [55.67299586253951]
本稿では,AIを活用した臨床アシスタントの訓練・開発に関連する臨床精神保健データセットの総合的調査を行う。
本調査では, 縦断データの欠如, 文化・言語表現の制限, 一貫性のない収集・注釈基準, 合成データのモダリティの欠如など, 重要なギャップを明らかにした。
論文 参考訳(メタデータ) (2025-08-13T13:42:35Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [58.61680631581921]
メンタルヘルス障害は、深い個人的・社会的負担を生じさせるが、従来の診断はリソース集約的でアクセシビリティが制限される。
本稿では、これらの課題を考察し、匿名化、合成データ、プライバシー保護トレーニングを含む解決策を提案する。
臨床的な意思決定をサポートし、メンタルヘルスの結果を改善する、信頼できるプライバシを意識したAIツールを進化させることを目標としている。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、多様な、アクセス可能な、スティグマのない、パーソナライズされた、リアルタイムのメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-17T22:04:32Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、アクセス可能で、スティグマフリーで、パーソナライズされ、リアルタイムなメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-06T17:11:29Z) - Enhancing Mental Health Support through Human-AI Collaboration: Toward Secure and Empathetic AI-enabled chatbots [0.0]
本稿では、スケーラブルなソリューションとしてのAI対応チャットボットの可能性について検討する。
メンタルヘルスの文脈で共感的で有意義な反応を提供する能力を評価する。
本稿では,データプライバシを保証し,バイアスを低減し,臨床医による継続的検証を統合して応答品質を向上させるためのフェデレート学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-17T20:49:13Z) - Building Trust in Mental Health Chatbots: Safety Metrics and LLM-Based Evaluation Tools [13.386012271835039]
100のベンチマーク質問と理想的な回答を備えた評価フレームワークを作成しました。
このフレームワークはメンタルヘルスの専門家によって検証され、GPT-3.5ベースのチャットボットでテストされた。
論文 参考訳(メタデータ) (2024-08-03T19:57:49Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。