論文の概要: Predicting Failures of LLMs to Link Biomedical Ontology Terms to Identifiers Evidence Across Models and Ontologies
- arxiv url: http://arxiv.org/abs/2509.04458v1
- Date: Wed, 27 Aug 2025 10:52:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-14 20:41:04.878875
- Title: Predicting Failures of LLMs to Link Biomedical Ontology Terms to Identifiers Evidence Across Models and Ontologies
- Title(参考訳): LLMの生物医学的オントロジー用語とモデルとオントロジーの証拠を結びつけるための失敗予測
- Authors: Daniel B. Hier, Steven Keith Platt, Tayo Obafemi-Ajayi,
- Abstract要約: 我々は、ヒト型オントロジーと遺伝子オントロジーの2つの主要な識別子と、2つの高性能NLPモデルであるGPT-4oとLMaLa 3.1Bを分析した。
用語の親しみ,使用法,形態,構造に関連する9つの特徴について検討した。
- 参考スコア(独自算出の注目度): 0.45880283710344066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models often perform well on biomedical NLP tasks but may fail to link ontology terms to their correct identifiers. We investigate why these failures occur by analyzing predictions across two major ontologies, Human Phenotype Ontology and Gene Ontology, and two high-performing models, GPT-4o and LLaMa 3.1 405B. We evaluate nine candidate features related to term familiarity, identifier usage, morphology, and ontology structure. Univariate and multivariate analyses show that exposure to ontology identifiers is the strongest predictor of linking success.
- Abstract(参考訳): 大規模言語モデルはバイオメディカルなNLPタスクでよく機能するが、オントロジー用語を正しい識別子にリンクできない場合がある。
ヒトフェノタイプオントロジーと遺伝子オントロジーの2つの主要なオントロジーと、GPT-4oとLLaMa 3.1 405Bの2つのハイパフォーマンスモデルにおける予測を解析することにより、これらの失敗がなぜ起こるのかを考察する。
用語の親しみ,識別子の使用,形態,オントロジー構造に関連する9つの特徴について検討した。
単変量および多変量解析は、オントロジー識別子への曝露が成功の最も強い予測因子であることを示している。
関連論文リスト
- Towards Scalable and Cross-Lingual Specialist Language Models for Oncology [4.824906329042275]
汎用大規模モデル(LLM)は、臨床用語、文脈に依存した解釈、マルチモーダルデータ統合といった課題に対処する。
本研究では,教師調律,検索強化生成(RAG),グラフベースの知識統合を組み合わせた,オンコロジー特化,効率的,適応可能なNLPフレームワークを開発する。
論文 参考訳(メタデータ) (2025-03-11T11:34:57Z) - BioMaze: Benchmarking and Enhancing Large Language Models for Biological Pathway Reasoning [49.487327661584686]
実際の研究から5.1Kの複雑な経路問題を持つデータセットであるBioMazeを紹介する。
CoT法やグラフ拡張推論法などの手法の評価は,LLMが経路推論に苦慮していることを示している。
そこで本稿では,インタラクティブなサブグラフベースのナビゲーションにより推論を強化するLLMエージェントであるPathSeekerを提案する。
論文 参考訳(メタデータ) (2025-02-23T17:38:10Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
我々は人工ニューラルネットワークを訓練し、シミュレーションと実際のジェノタイプフェノタイプデータセットの両方を用いて複雑な特徴を予測する。
統合失調症に合併した多発性座位を指摘された。
論文 参考訳(メタデータ) (2024-07-26T15:20:42Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Highly Accurate Disease Diagnosis and Highly Reproducible Biomarker
Identification with PathFormer [32.26944736442376]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを分析するための主要なディープラーニングモデルである。
課題の根源は、生物学的シグナル伝達経路のユニークなグラフ構造である。
本稿では,バイオマーカーのランク付けと疾患診断の予測のために,シグナルネットワーク,優先知識,オミクスデータを統合した新しいGNNモデルアーキテクチャPathFormerを提案する。
論文 参考訳(メタデータ) (2024-02-11T18:23:54Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
アルツハイマー病(英: Alzheimers disease、AD)は、β-アミロイド、病理学的タウ、神経変性を特徴とする異種多時性神経変性疾患である。
本稿では,AD病理学に確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織形成ネットワーク(PSSN)を提案する。
論文 参考訳(メタデータ) (2022-10-12T02:52:00Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。