論文の概要: Artificial intelligence for representing and characterizing quantum systems
- arxiv url: http://arxiv.org/abs/2509.04923v1
- Date: Fri, 05 Sep 2025 08:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.535376
- Title: Artificial intelligence for representing and characterizing quantum systems
- Title(参考訳): 量子系を表現・特徴化するための人工知能
- Authors: Yuxuan Du, Yan Zhu, Yuan-Hang Zhang, Min-Hsiu Hsieh, Patrick Rebentrost, Weibo Gao, Ya-Dong Wu, Jens Eisert, Giulio Chiribella, Dacheng Tao, Barry C. Sanders,
- Abstract要約: 大規模量子システムの効率的なキャラクタリゼーションは、量子科学における中心的な課題である。
人工知能(AI)の最近の進歩は、この課題に対処するための強力なツールとして現れている。
本稿では、これらのAIパラダイムが量子システム評価における2つのコアタスクにどのように貢献するかを論じる。
- 参考スコア(独自算出の注目度): 49.29080693498154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient characterization of large-scale quantum systems, especially those produced by quantum analog simulators and megaquop quantum computers, poses a central challenge in quantum science due to the exponential scaling of the Hilbert space with respect to system size. Recent advances in artificial intelligence (AI), with its aptitude for high-dimensional pattern recognition and function approximation, have emerged as a powerful tool to address this challenge. A growing body of research has leveraged AI to represent and characterize scalable quantum systems, spanning from theoretical foundations to experimental realizations. Depending on how prior knowledge and learning architectures are incorporated, the integration of AI into quantum system characterization can be categorized into three synergistic paradigms: machine learning, and, in particular, deep learning and language models. This review discusses how each of these AI paradigms contributes to two core tasks in quantum systems characterization: quantum property prediction and the construction of surrogates for quantum states. These tasks underlie diverse applications, from quantum certification and benchmarking to the enhancement of quantum algorithms and the understanding of strongly correlated phases of matter. Key challenges and open questions are also discussed, together with future prospects at the interface of AI and quantum science.
- Abstract(参考訳): 大規模量子系、特に量子アナログシミュレータやメガクォープ量子コンピュータによって生成される量子系の効率的な特徴づけは、ヒルベルト空間のシステムサイズに対する指数的スケーリングによって量子科学において中心的な課題となる。
人工知能(AI)の最近の進歩は、高次元パターン認識と関数近似に適しており、この課題に対処するための強力なツールとして現れている。
AIを活用して、理論の基礎から実験的な実現に至るまで、スケーラブルな量子システムを表現し、特徴づけている研究団体が増えている。
事前の知識と学習アーキテクチャがどのように組み込まれているかによって、量子システムの特徴付けへのAIの統合は、機械学習、特にディープラーニングと言語モデルという3つのシナジスティックパラダイムに分類できる。
本稿では、これらのAIパラダイムが量子システムの特性評価において、量子特性予測と量子状態のサロゲートの構成という2つのコアタスクにどのように貢献するかを論じる。
これらのタスクは、量子認証とベンチマークから量子アルゴリズムの強化、物質の強相関位相の理解まで、様々な応用を成している。
主要な課題とオープンな質問も議論され、AIと量子科学のインターフェースにおける今後の展望も議論されている。
関連論文リスト
- Quantum Agents [0.3495246564946556]
本稿では,量子コンピューティングとエージェントAIの交わりについて考察する。
将来の量子エージェントプラットフォームに関する概念的および技術的基盤を提示する。
スケーラブルでインテリジェントで適応的な量子エージェントエコシステムへの道のりを図示することを目指しています。
論文 参考訳(メタデータ) (2025-06-02T10:54:31Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
量子機械学習(Quantum Machine Learning)は、量子コンピューティングと機械学習の交差点におけるパラダイムシフトである。
この分野は、ハードウェアの制約、ノイズ、量子ビットコヒーレンス(英語版)の制限など、重大な課題に直面している。
この調査は、実用的な実世界のアプリケーションに向けて量子機械学習を進めるための基盤となるリソースを提供することを目的としている。
論文 参考訳(メタデータ) (2025-01-16T13:25:49Z) - QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design [17.747641494506087]
量子アルゴリズムの設計と実装におけるAIの能力を評価するために設計された、最初のベンチマークおよびテストデータセットであるQCircuitNetを紹介する。
従来のコードの記述にAIを使用するのとは異なり、このタスクは基本的に異なり、非常に柔軟な設計空間と複雑なキュービット操作のため、さらに複雑である。
論文 参考訳(メタデータ) (2024-10-10T14:24:30Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Learning Quantum Systems [0.0]
量子技術は、セキュアな通信、高性能コンピューティング、超精密センシングにおける画期的な応用によって、私たちの社会に革命をもたらすと約束している。
量子技術のスケールアップにおける主な特徴の1つは、量子システムの複雑さがその大きさと指数関数的にスケールすることである。
これは、量子状態の効率的なキャリブレーション、ベンチマーク、検証とその動的制御において深刻な問題を引き起こす。
論文 参考訳(メタデータ) (2022-07-01T09:47:26Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
量子機械学習は、量子技術の中でエキサイティングで有望なパラダイムとして登場した。
本稿では,これらのトピックについて概観し,科学コミュニティが実施した関連研究について述べる。
論文 参考訳(メタデータ) (2020-04-25T07:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。