論文の概要: QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design
- arxiv url: http://arxiv.org/abs/2410.07961v1
- Date: Thu, 10 Oct 2024 14:24:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 13:53:52.199866
- Title: QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design
- Title(参考訳): QCircuitNet:量子アルゴリズム設計のための大規模階層的データセット
- Authors: Rui Yang, Yuntian Gu, Ziruo Wang, Yitao Liang, Tongyang Li,
- Abstract要約: 量子アルゴリズムの設計と実装におけるAIの能力を評価するために設計された、最初のベンチマークおよびテストデータセットであるQCircuitNetを紹介する。
従来のコードの記述にAIを使用するのとは異なり、このタスクは基本的に異なり、非常に柔軟な設計空間と複雑なキュービット操作のため、さらに複雑である。
- 参考スコア(独自算出の注目度): 17.747641494506087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is an emerging field recognized for the significant speedup it offers over classical computing through quantum algorithms. However, designing and implementing quantum algorithms pose challenges due to the complex nature of quantum mechanics and the necessity for precise control over quantum states. Despite the significant advancements in AI, there has been a lack of datasets specifically tailored for this purpose. In this work, we introduce QCircuitNet, the first benchmark and test dataset designed to evaluate AI's capability in designing and implementing quantum algorithms in the form of quantum circuit codes. Unlike using AI for writing traditional codes, this task is fundamentally different and significantly more complicated due to highly flexible design space and intricate manipulation of qubits. Our key contributions include: 1. A general framework which formulates the key features of quantum algorithm design task for Large Language Models. 2. Implementation for a wide range of quantum algorithms from basic primitives to advanced applications, with easy extension to more quantum algorithms. 3. Automatic validation and verification functions, allowing for iterative evaluation and interactive reasoning without human inspection. 4. Promising potential as a training dataset through primitive fine-tuning results. We observed several interesting experimental phenomena: fine-tuning does not always outperform few-shot learning, and LLMs tend to exhibit consistent error patterns. QCircuitNet provides a comprehensive benchmark for AI-driven quantum algorithm design, offering advantages in model evaluation and improvement, while also revealing some limitations of LLMs in this domain.
- Abstract(参考訳): 量子コンピューティングは、量子アルゴリズムによる古典的コンピューティングよりも重要なスピードアップによって認識される新興分野である。
しかし、量子アルゴリズムの設計と実装は、量子力学の複雑な性質と量子状態の正確な制御の必要性のために課題を提起する。
AIの大幅な進歩にもかかわらず、この目的のために特別に調整されたデータセットが不足している。
本研究では、量子回路符号の形式で量子アルゴリズムを設計、実装するAIの能力を評価するために設計された、最初のベンチマークおよびテストデータセットであるQCircuitNetを紹介する。
従来のコードの記述にAIを使用するのとは異なり、このタスクは基本的に異なり、非常に柔軟な設計空間と複雑なキュービット操作のため、さらに複雑である。
私たちの重要なコントリビューションは以下のとおりです。
1.大規模言語モデルのための量子アルゴリズム設計タスクの重要な特徴を定式化する一般的なフレームワーク。
2. 基本プリミティブから高度なアプリケーションへの幅広い量子アルゴリズムの実装。
3.人間の検査なしに反復的な評価と対話的推論を可能にする自動検証・検証機能。
4. プリミティブな微調整結果によるトレーニングデータセットとしてのポテンシャルの予測。
我々はいくつかの興味深い実験的な現象を観察した: 微調整は必ずしも数発の学習に勝るとは限らないし、LSMは一貫した誤りパターンを示す傾向がある。
QCircuitNetは、AI駆動の量子アルゴリズム設計のための包括的なベンチマークを提供し、モデル評価と改善のアドバンテージを提供するとともに、この分野におけるLLMのいくつかの制限を明らかにしている。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Q-gen: A Parameterized Quantum Circuit Generator [0.6062751776009752]
本稿では、15個の現実的量子アルゴリズムを取り入れた高レベルパラメータ化量子回路生成器Q-genを紹介する。
Q-genは、古典的なコンピュータサイエンスの背景を持つユーザが量子コンピューティングの世界に飛び込むための入り口として機能するオープンソースプロジェクトである。
論文 参考訳(メタデータ) (2024-07-26T12:22:40Z) - Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
最初の考慮事項の1つは、量子機械学習モデル自体の設計である。
最近の研究は、スピードアップによる量子アドバンテージが量子機械学習の正しい目標かどうかを疑問視し始めた。
本稿では,古典的なディープラーニングアルゴリズムの設計を量子ニューラルネットワークの設計に取り入れることで,代替手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T06:31:22Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
時間進化作用素は、量子コンピュータにおける化学実験の正確な計算において重要な役割を果たす。
我々は、運動エネルギー演算子の量子化のための新しい符号化法、すなわち量子近似時間発展法(QATE)を提案している。
論文 参考訳(メタデータ) (2023-10-05T05:25:38Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
量子アルゴリズムの有望な領域は量子機械学習と量子最適化である。
近年の量子技術、特に量子ソフトウェアの発展により、研究と産業のコミュニティは量子アルゴリズムの新しい応用を見つけようとしている。
論文 参考訳(メタデータ) (2021-12-22T06:19:36Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。