論文の概要: Interpretable Deep Transfer Learning for Breast Ultrasound Cancer Detection: A Multi-Dataset Study
- arxiv url: http://arxiv.org/abs/2509.05004v1
- Date: Fri, 05 Sep 2025 11:03:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.571102
- Title: Interpretable Deep Transfer Learning for Breast Ultrasound Cancer Detection: A Multi-Dataset Study
- Title(参考訳): 乳房超音波癌検出のための解釈型深達度学習 : マルチデータセットによる検討
- Authors: Mohammad Abbadi, Yassine Himeur, Shadi Atalla, Wathiq Mansoor,
- Abstract要約: 本稿では,超音波画像を用いた乳癌分類における機械学習と深層学習の応用について述べる。
従来の機械学習モデル(SVM, KNN)と深部畳み込みニューラルネットワーク(ResNet-18, EfficientNet-B0, GoogLeNet)を評価する。
ResNet-18は、悪性病変に対して高い精度(99.7%)と完全な感度を達成する。
- 参考スコア(独自算出の注目度): 3.8015258892590924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer remains a leading cause of cancer-related mortality among women worldwide. Ultrasound imaging, widely used due to its safety and cost-effectiveness, plays a key role in early detection, especially in patients with dense breast tissue. This paper presents a comprehensive study on the application of machine learning and deep learning techniques for breast cancer classification using ultrasound images. Using datasets such as BUSI, BUS-BRA, and BrEaST-Lesions USG, we evaluate classical machine learning models (SVM, KNN) and deep convolutional neural networks (ResNet-18, EfficientNet-B0, GoogLeNet). Experimental results show that ResNet-18 achieves the highest accuracy (99.7%) and perfect sensitivity for malignant lesions. Classical ML models, though outperformed by CNNs, achieve competitive performance when enhanced with deep feature extraction. Grad-CAM visualizations further improve model transparency by highlighting diagnostically relevant image regions. These findings support the integration of AI-based diagnostic tools into clinical workflows and demonstrate the feasibility of deploying high-performing, interpretable systems for ultrasound-based breast cancer detection.
- Abstract(参考訳): 乳がんは、世界中で女性のがん関連死亡の原因となっている。
超音波イメージングは安全性と費用対効果のために広く用いられているが、特に高濃度の乳房組織において早期発見において重要な役割を担っている。
本稿では,超音波画像を用いた乳癌分類における機械学習と深層学習の応用に関する総合的研究について述べる。
BUSI、BUS-BRA、BrEaST-Lesions USGなどのデータセットを使用して、古典的機械学習モデル(SVM、KNN)と深層畳み込みニューラルネットワーク(ResNet-18、EfficientNet-B0、GoogLeNet)を評価する。
実験の結果、ResNet-18は99.7%の精度と悪性病変に対する完全な感度を達成している。
古典的なMLモデルはCNNより優れているが、深い特徴抽出で拡張された場合、競争性能が向上する。
Grad-CAM視覚化は、診断に関連のある画像領域を強調することにより、モデルの透明性をさらに向上する。
これらの結果は、AIベースの診断ツールを臨床ワークフローに統合することをサポートし、超音波ベースの乳がん検出のための高性能で解釈可能なシステムをデプロイする可能性を示している。
関連論文リスト
- An Artificial Intelligence Model for Early Stage Breast Cancer Detection from Biopsy Images [0.0]
本稿では,乳がんのタイプ識別を支援する人工知能ツールを提案する。
提案モデルは、良性組織と悪性組織を区別するために、畳み込みニューラルネットワーク(CNN)アーキテクチャを利用する。
このようなデータセットの実験結果は、モデルの有効性を示し、精度、精度、リコール、F1スコアの点で、既存のソリューションよりも優れています。
論文 参考訳(メタデータ) (2025-05-24T09:11:50Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - CEIMVEN: An Approach of Cutting Edge Implementation of Modified Versions of EfficientNet (V1-V2) Architecture for Breast Cancer Detection and Classification from Ultrasound Images [0.0]
乳がんは女性の死亡数の最大の原因となっている。
近年の研究では、超音波画像やマンモグラフィーから乳がんを検出・分類し、深層ニューラルネットワークで分類する上で、医療画像処理と医療画像処理が重要な役割を担っている。
本研究では,EfficientNet の最先端版の改良版に対する厳密な実装と反復的な結果分析に焦点をあてた。
論文 参考訳(メタデータ) (2023-08-25T13:05:06Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - Breast Cancer Classification using Deep Learned Features Boosted with
Handcrafted Features [0.0]
早期発見・分類・診断の枠組みを考えることは,研究コミュニティにとって最も重要である。
本稿では,マンモグラフィーを用いた乳癌の分類のための新しい枠組みを提案する。
提案するフレームワークは,新しい畳み込みニューラルネットワーク(CNN)機能から抽出したロバストな特徴と手作りの機能を組み合わせたものである。
論文 参考訳(メタデータ) (2022-06-26T07:54:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Classification of Breast Cancer Lesions in Ultrasound Images by using
Attention Layer and loss Ensembles in Deep Convolutional Neural Networks [0.0]
本稿では,VGG16アーキテクチャーのアテンションモジュールを用いた乳癌病変の分類のための新しい枠組みを提案する。
また,双曲性コサイン損失の二値交互エントロピーと対数の組み合わせである新たなアンサンブル損失関数を提案し,分類病変とそのラベル間のモデル差を改善する。
本研究で提案したモデルは,93%の精度で他の改良VGG16アーキテクチャよりも優れており,乳がん病変の分類のための他の技術フレームワークと競合する結果となった。
論文 参考訳(メタデータ) (2021-02-23T06:49:12Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
本研究の目的は,マンモグラフィ画像における乳腺病変の自動検出,分画,分類のための深層畳み込みニューラルネットワーク手法を構築することである。
ディープラーニングに基づいて,選択と抽出を特徴とするmask-cnn(roialign)法を開発し,drknet architectureを用いて分類を行った。
論文 参考訳(メタデータ) (2021-01-24T03:30:59Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。