論文の概要: Classification of Breast Cancer Lesions in Ultrasound Images by using
Attention Layer and loss Ensembles in Deep Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2102.11519v1
- Date: Tue, 23 Feb 2021 06:49:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 03:59:57.655380
- Title: Classification of Breast Cancer Lesions in Ultrasound Images by using
Attention Layer and loss Ensembles in Deep Convolutional Neural Networks
- Title(参考訳): 深層畳み込みニューラルネットワークにおける注意層と損失アンサンブルを用いた超音波画像中の乳癌病変の分類
- Authors: Elham Yousef Kalaf, Ata Jodeiri, Seyed Kamaledin Setarehdan, Ng Wei
Lin, Kartini Binti Rahman, Nur Aishah Taib, Sarinder Kaur Dhillon
- Abstract要約: 本稿では,VGG16アーキテクチャーのアテンションモジュールを用いた乳癌病変の分類のための新しい枠組みを提案する。
また,双曲性コサイン損失の二値交互エントロピーと対数の組み合わせである新たなアンサンブル損失関数を提案し,分類病変とそのラベル間のモデル差を改善する。
本研究で提案したモデルは,93%の精度で他の改良VGG16アーキテクチャよりも優れており,乳がん病変の分類のための他の技術フレームワークと競合する結果となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable classification of benign and malignant lesions in breast ultrasound
images can provide an effective and relatively low cost method for early
diagnosis of breast cancer. The accuracy of the diagnosis is however highly
dependent on the quality of the ultrasound systems and the experience of the
users (radiologists). The leverage in deep convolutional neural network
approaches provided solutions in efficient analysis of breast ultrasound
images. In this study, we proposed a new framework for classification of breast
cancer lesions by use of an attention module in modified VGG16 architecture. We
also proposed new ensembled loss function which is the combination of binary
cross-entropy and logarithm of the hyperbolic cosine loss to improve the model
discrepancy between classified lesions and its labels. Networks trained from
pretrained ImageNet weights, and subsequently fine-tuned with ultrasound
datasets. The proposed model in this study outperformed other modified VGG16
architectures with the accuracy of 93% and also the results are competitive
with other state of the art frameworks for classification of breast cancer
lesions. In this study, we employed transfer learning approaches with the
pre-trained VGG16 architecture. Different CNN models for classification task
were trained to predict benign or malignant lesions in breast ultrasound
images. Our Experimental results show that the choice of loss function is
highly important in classification task and by adding an attention block we
could empower the performance our model.
- Abstract(参考訳): 乳房超音波画像における良性病変と悪性病変の信頼性の高い分類は、乳癌の早期診断に有効かつ比較的安価に有用である。
しかし、診断の精度は、超音波システムの品質とユーザー(放射線科医)の経験に大きく依存しています。
深い畳み込みニューラルネットワークアプローチの活用は、乳房超音波画像の効率的な分析にソリューションを提供しました。
本研究では,vgg16アーキテクチャを改良したアテンションモジュールを用いて,乳癌病変の分類のための新しい枠組みを提案する。
また,双曲性コサイン損失の二値交互エントロピーと対数の組み合わせである新たなアンサンブル損失関数を提案し,分類病変とそのラベル間のモデル差を改善する。
トレーニング済みのImageNet重みからトレーニングされたネットワークは、その後、超音波データセットで微調整される。
本研究で提案したモデルは,93%の精度で他の改良VGG16アーキテクチャよりも優れており,乳がん病変の分類のための他の技術フレームワークと競合する結果となった。
本研究では,事前学習したVGG16アーキテクチャを用いて伝達学習手法を適用した。
乳房超音波画像における良性または悪性病変の予測のために, 分類タスクの異なるcnnモデルを訓練した。
実験の結果, 分類作業において損失関数の選択が重要であり, 注意ブロックを追加することで, モデルの性能を高めることができた。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
乳がん検出のための生物物理学的特徴に基づく機械学習手法を提案する。
以上より, 乳腺病変のタイプとサイズは, 分類では98.0%, 操作特性曲線では0.98以上であった。
論文 参考訳(メタデータ) (2022-07-13T23:53:09Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
本研究の目的は,マンモグラフィ画像における乳腺病変の自動検出,分画,分類のための深層畳み込みニューラルネットワーク手法を構築することである。
ディープラーニングに基づいて,選択と抽出を特徴とするmask-cnn(roialign)法を開発し,drknet architectureを用いて分類を行った。
論文 参考訳(メタデータ) (2021-01-24T03:30:59Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。