論文の概要: Semi-supervised Deep Transfer for Regression without Domain Alignment
- arxiv url: http://arxiv.org/abs/2509.05092v1
- Date: Fri, 05 Sep 2025 13:30:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.600254
- Title: Semi-supervised Deep Transfer for Regression without Domain Alignment
- Title(参考訳): ドメインアライメントを伴わない回帰のための半教師付き深層移動法
- Authors: Mainak Biswas, Ambedkar Dukkipati, Devarajan Sridharan,
- Abstract要約: 現実世界のアプリケーション(医学など)にデプロイされるディープラーニングモデルは、ソースモデルがドメインシフトされたターゲットデータにうまく一般化しないため、課題に直面します。
CRAFT(Contradistinguisher-based Regularization Approach for Flexible Training)を開発した。
- 参考スコア(独自算出の注目度): 9.443691730379156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models deployed in real-world applications (e.g., medicine) face challenges because source models do not generalize well to domain-shifted target data. Many successful domain adaptation (DA) approaches require full access to source data. Yet, such requirements are unrealistic in scenarios where source data cannot be shared either because of privacy concerns or because it is too large and incurs prohibitive storage or computational costs. Moreover, resource constraints may limit the availability of labeled targets. We illustrate this challenge in a neuroscience setting where source data are unavailable, labeled target data are meager, and predictions involve continuous-valued outputs. We build upon Contradistinguisher (CUDA), an efficient framework that learns a shared model across the labeled source and unlabeled target samples, without intermediate representation alignment. Yet, CUDA was designed for unsupervised DA, with full access to source data, and for classification tasks. We develop CRAFT -- a Contradistinguisher-based Regularization Approach for Flexible Training -- for source-free (SF), semi-supervised transfer of pretrained models in regression tasks. We showcase the efficacy of CRAFT in two neuroscience settings: gaze prediction with electroencephalography (EEG) data and ``brain age'' prediction with structural MRI data. For both datasets, CRAFT yielded up to 9% improvement in root-mean-squared error (RMSE) over fine-tuned models when labeled training examples were scarce. Moreover, CRAFT leveraged unlabeled target data and outperformed four competing state-of-the-art source-free domain adaptation models by more than 3%. Lastly, we demonstrate the efficacy of CRAFT on two other real-world regression benchmarks. We propose CRAFT as an efficient approach for source-free, semi-supervised deep transfer for regression that is ubiquitous in biology and medicine.
- Abstract(参考訳): 現実世界のアプリケーション(例えば医療)にデプロイされるディープラーニングモデルは、ソースモデルがドメインシフトターゲットデータにうまく一般化しないため、課題に直面します。
多くのドメイン適応(DA)アプローチは、ソースデータへの完全なアクセスを必要とする。
しかし、そのような要件は、プライバシの懸念や、それが大きすぎるため、ストレージや計算コストが禁じられているため、ソースデータを共有できないシナリオでは非現実的です。
さらに、リソースの制約はラベル付きターゲットの可用性を制限する可能性がある。
我々は、この課題を、ソースデータが利用できない、ラベル付き対象データが少ない、連続的な評価出力を含む、神経科学的な環境で説明する。
Contradistinguisher(CUDA)は、ラベル付きソースとラベルなしターゲットサンプルの共有モデルを中間表現アライメントなしで学習する効率的なフレームワークである。
しかし、CUDAは教師なしDA、ソースデータへの完全なアクセス、および分類タスクのために設計された。
CRAFT (Contradistinguisher-based Regularization Approach for Flexible Training -- for source-free (SF), semi-supervised transfer of pretrained model in regression task。
脳波(EEG)データによる視線予測と,構造的MRIデータによる脳年齢予測の2つの神経科学環境でのCRAFTの有効性を示す。
両方のデータセットに対して、CRAFTは、ラベル付きトレーニング例が不足している場合には、微調整されたモデルよりも最大9%のルート平均二乗誤差(RMSE)が改善された。
さらに、CRAFTはラベルのないターゲットデータを活用し、4つの競合する最先端のソースフリードメイン適応モデルを3%以上上回った。
最後に,CRAFTが他の2つの実世界の回帰ベンチマークに対して有効であることを示す。
我々はCRAFTを,生物や医学においてユビキタスなレグレッションのための,ソースフリーで半教師付き深層移動のための効率的なアプローチとして提案する。
関連論文リスト
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning(FL)は、複数のエッジデバイスを使用したグローバルモデルの協調トレーニングを可能にする、有望な分散機械学習アプローチである。
動的不均一モデルアグリゲーション(FedDH)と適応ドロップアウト(FedAD)の2つの新しい手法を備えたFedDHAD FLフレームワークを提案する。
これら2つの手法を組み合わせることで、FedDHADは精度(最大6.7%)、効率(最大2.02倍高速)、コスト(最大15.0%小型)で最先端のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2025-07-14T16:19:00Z) - Asymmetric Co-Training for Source-Free Few-Shot Domain Adaptation [5.611768906855499]
SFFSDAシナリオに特化して設計された非対称コトレーニング(ACT)手法を提案する。
ターゲットモデルをトレーニングするために、2段階の最適化プロセスを使用します。
本研究は,少数のラベル付き対象データのみを用いた事前学習モデルの適用により,実用的で信頼性の高い解が得られることを示唆する。
論文 参考訳(メタデータ) (2025-02-20T02:58:45Z) - Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples [1.1852406625172216]
本研究では,未ラベルのターゲットデータに対して,ソースデータにアクセスせずにモデル精度を推定する新しいフレームワークを提案する。
提案手法は,ソース仮説と対象の擬似ラベル関数との相違率を測定する。
提案するソースフリーフレームワークは,分散シフトの困難なシナリオに効果的に対処し,トレーニングにソースデータやラベルを必要とする既存の手法より優れている。
論文 参考訳(メタデータ) (2023-07-19T15:33:11Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
ソースフリードメイン適応(SFDA)は、事前訓練されたソースモデルのみを使用することで、未ラベルのターゲットデータセットに分類器を適応させることを目的としている。
本稿では、ソースモデル予測の不確実性を定量化し、ターゲット適応の導出に利用することを提案する。
論文 参考訳(メタデータ) (2022-08-16T08:03:30Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
本稿では,SSHT(Semi-supervised Source hypothesis Transfer)という新たなタスクを提案する。
本研究では、ランダムに拡張された2つの未ラベルデータ間の予測整合性を容易にし、SSHTの簡易かつ効果的なフレームワークである一貫性と多様性の学習(CDL)を提案する。
実験の結果,本手法は,DomainNet,Office-Home,Office-31データセット上で,既存のSSDA手法や教師なしモデル適応手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-07T04:14:24Z) - Unsupervised Multi-source Domain Adaptation Without Access to Source
Data [58.551861130011886]
Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインから知識を転送することで、ラベル付きドメインの予測モデルを学ぶことを目的としている。
本稿では,ソースモデルと適切な重み付けを自動的に組み合わせ,少なくとも最良のソースモデルと同等の性能を発揮する新しい効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-05T10:45:12Z) - Distill and Fine-tune: Effective Adaptation from a Black-box Source
Model [138.12678159620248]
Unsupervised Domain Adapt (UDA) は、既存のラベル付きデータセット (source) の知識を新しいラベル付きデータセット (target) に転送することを目的としています。
Distill and Fine-tune (Dis-tune) という新しい二段階適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-04T05:29:05Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
論文 参考訳(メタデータ) (2021-03-30T14:14:29Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。