論文の概要: Dual-Branch Convolutional Framework for Spatial and Frequency-Based Image Forgery Detection
- arxiv url: http://arxiv.org/abs/2509.05281v1
- Date: Fri, 05 Sep 2025 17:41:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.672938
- Title: Dual-Branch Convolutional Framework for Spatial and Frequency-Based Image Forgery Detection
- Title(参考訳): 空間及び周波数に基づく画像偽造検出のためのデュアルブランチ畳み込みフレームワーク
- Authors: Naman Tyagi,
- Abstract要約: 本稿では,フォージェリー検出のための空間的特徴と周波数的特徴を組み合わせたフォージェリー検出フレームワークを提案する。
両枝の特徴は融合され、シームズネットワーク内で比較され、64次元の埋め込みによって分類される。
CASIA 2.0データセットでベンチマークすると,従来の統計手法よりも精度が77.9%向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With a very rapid increase in deepfakes and digital image forgeries, ensuring the authenticity of images is becoming increasingly challenging. This report introduces a forgery detection framework that combines spatial and frequency-based features for detecting forgeries. We propose a dual branch convolution neural network that operates on features extracted from spatial and frequency domains. Features from both branches are fused and compared within a Siamese network, yielding 64 dimensional embeddings for classification. When benchmarked on CASIA 2.0 dataset, our method achieves an accuracy of 77.9%, outperforming traditional statistical methods. Despite its relatively weaker performance compared to larger, more complex forgery detection pipelines, our approach balances computational complexity and detection reliability, making it ready for practical deployment. It provides a strong methodology for forensic scrutiny of digital images. In a broader sense, it advances the state of the art in visual forensics, addressing an urgent requirement in media verification, law enforcement and digital content reliability.
- Abstract(参考訳): ディープフェイクやデジタル画像の偽造が急速に増加し、画像の真正性を保証することはますます困難になりつつある。
本稿では,フォージェリー検出のための空間的特徴と周波数的特徴を組み合わせたフォージェリー検出フレームワークを提案する。
本稿では,空間領域と周波数領域から抽出した特徴に基づいて,二重分岐畳み込みニューラルネットワークを提案する。
両枝の特徴は融合され、シームズネットワーク内で比較され、64次元の埋め込みによって分類される。
CASIA 2.0データセットでベンチマークすると,従来の統計手法よりも精度が77.9%向上した。
より大きく、より複雑なフォージェリー検出パイプラインと比較して、パフォーマンスが比較的低いにもかかわらず、我々のアプローチは計算複雑性と検出信頼性のバランスをとり、実用的なデプロイメントの準備が整った。
デジタル画像の法医学的調査のための強力な方法論を提供する。
より広い意味では、メディア検証、法執行、デジタルコンテンツ信頼性における緊急の要件に対処するため、視覚法医学における最先端の技術を推進している。
関連論文リスト
- Explainable Synthetic Image Detection through Diffusion Timestep Ensembling [30.298198387824275]
本稿では,複数の雑音の時間ステップでアンサンブルを訓練することにより,中間雑音画像の特徴を直接活用する合成画像検出手法を提案する。
人間の理解を深めるために,メートル法に基づく説明文生成と改良モジュールを導入する。
本手法は, 正解率98.91%, 正解率95.89%, 正解率95.89%, 正解率98.91%, 正解率95.89%である。
論文 参考訳(メタデータ) (2025-03-08T13:04:20Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
DA-HFNet鍛造画像データセットをテキストまたは画像支援GANおよび拡散モデルで作成する。
我々のゴールは、階層的なプログレッシブネットワークを使用して、異なるスケールの偽造物を検出およびローカライゼーションするために捕獲することである。
論文 参考訳(メタデータ) (2024-06-03T16:13:33Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
深層畳み込みニューラルネットワークを用いた画像データからのひび割れの分類について多くの研究がなされている。
本稿では,画像ノイズがネットワークの精度に与える影響について検討する。
AlexNetは提案したインデックスに基づいて最も効率的なモデルに選ばれた。
論文 参考訳(メタデータ) (2021-11-03T09:08:54Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Camera Invariant Feature Learning for Generalized Face Anti-spoofing [95.30490139294136]
本稿では,特徴レベルの取得カメラから固有のばらつきの影響を排除したフレームワークについて述べる。
実験により、提案手法はデータセット内設定とデータセット間設定の両方でより良いパフォーマンスを達成できることが示された。
論文 参考訳(メタデータ) (2021-01-25T13:40:43Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。