論文の概要: Chatbot To Help Patients Understand Their Health
- arxiv url: http://arxiv.org/abs/2509.05818v1
- Date: Sat, 06 Sep 2025 19:50:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.728391
- Title: Chatbot To Help Patients Understand Their Health
- Title(参考訳): Chatbotは、患者の健康状態を理解するのに役立つ
- Authors: Won Seok Jang, Hieu Tran, Manav Mistry, SaiKiran Gandluri, Yifan Zhang, Sharmin Sultana, Sunjae Kown, Yuan Zhang, Zonghai Yao, Hong Yu,
- Abstract要約: NoteAid-Chatbotは,新たな‘会話としての学習’フレームワークを通じて,患者の理解を促進する会話型AIだ。
NoteAid-Chatbotは、医療会話戦略を用いて合成された会話データの初期教師付き微調整と、シミュレートされた病院退院シナリオにおける患者理解評価から得られる報酬のRLの2段階で訓練された軽量LLaMA 3.2 3Bモデルに基づいて構築された。
- 参考スコア(独自算出の注目度): 15.774681886100383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patients must possess the knowledge necessary to actively participate in their care. We present NoteAid-Chatbot, a conversational AI that promotes patient understanding via a novel 'learning as conversation' framework, built on a multi-agent large language model (LLM) and reinforcement learning (RL) setup without human-labeled data. NoteAid-Chatbot was built on a lightweight LLaMA 3.2 3B model trained in two stages: initial supervised fine-tuning on conversational data synthetically generated using medical conversation strategies, followed by RL with rewards derived from patient understanding assessments in simulated hospital discharge scenarios. Our evaluation, which includes comprehensive human-aligned assessments and case studies, demonstrates that NoteAid-Chatbot exhibits key emergent behaviors critical for patient education, such as clarity, relevance, and structured dialogue, even though it received no explicit supervision for these attributes. Our results show that even simple Proximal Policy Optimization (PPO)-based reward modeling can successfully train lightweight, domain-specific chatbots to handle multi-turn interactions, incorporate diverse educational strategies, and meet nuanced communication objectives. Our Turing test demonstrates that NoteAid-Chatbot surpasses non-expert human. Although our current focus is on healthcare, the framework we present illustrates the feasibility and promise of applying low-cost, PPO-based RL to realistic, open-ended conversational domains, broadening the applicability of RL-based alignment methods.
- Abstract(参考訳): 患者は治療に積極的に参加するために必要な知識を持っていなければならない。
我々は,マルチエージェントの大規模言語モデル(LLM)と強化学習(RL)のセットアップ上に構築された,新たな「会話としての学習」フレームワークを通じて患者の理解を促進する対話型AIであるNoteAid-Chatbotを提案する。
NoteAid-Chatbotは、医療会話戦略を用いて合成された会話データの初期教師付き微調整と、シミュレートされた病院退院シナリオにおける患者理解評価から得られる報酬のRLの2段階で訓練された軽量LLaMA 3.2 3Bモデルに基づいて構築された。
本評価は, 包括的ヒトアライメント評価とケーススタディを含むもので, 患者教育において重要な, 明瞭さ, 関連性, 構造的対話などの重要な創発的行動を示す。
この結果から,PPOに基づく報酬モデルさえも,軽量でドメイン固有のチャットボットを訓練して,マルチターンインタラクションを処理し,多様な教育戦略を取り入れ,コミュニケーション目標を満たすことが可能であることが示唆された。
チューリングテストでは、NoteAid-Chatbotが熟練していない人間を上回ることが示されています。
現在、医療に重点を置いているが、このフレームワークは、低コストのPPOベースのRLを現実的でオープンな会話ドメインに適用し、RLベースのアライメント手法の適用性を広げる可能性と可能性を示している。
関連論文リスト
- Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
大きな言語モデル(LLM)は、対話生成を含む自然言語処理タスクにおいて印象的な機能を示している。
本研究の目的は、LoRAによる微調整とRetrieval-Augmented Generationフレームワークという、2つの重要な技術の比較分析を行うことである。
論文 参考訳(メタデータ) (2025-02-04T11:50:40Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
大規模言語モデル(LLM)は、複雑なコミュニケーションメトリクスを評価するための新しいアプローチを提供する。
LLMは受動的センシングシステムとジャスト・イン・タイム・イン・タイム・イン・イン・介入システムとの統合を通じて、分野を前進させる可能性を提供する。
本研究は, 言語, 文脈内学習, 推論能力を活用した緩和ケアコミュニケーションの質評価手法としてLLMについて検討する。
論文 参考訳(メタデータ) (2024-09-23T16:39:12Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - MedNgage: A Dataset for Understanding Engagement in Patient-Nurse
Conversations [4.847266237348932]
症状を効果的に管理する患者は、医療従事者との会話や介入において、より高いレベルのエンゲージメントを示すことが多い。
AIシステムは、患者と実践者との自然な会話におけるエンゲージメントを理解して、患者のケアにもっと貢献することが不可欠である。
本稿では,がん症状管理に関する患者と看護者の会話をまとめた新しいデータセット(MedNgage)を提案する。
論文 参考訳(メタデータ) (2023-05-31T16:06:07Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。