論文の概要: Code2MCP: Transforming Code Repositories into MCP Services
- arxiv url: http://arxiv.org/abs/2509.05941v2
- Date: Sun, 28 Sep 2025 08:50:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 17:47:09.209086
- Title: Code2MCP: Transforming Code Repositories into MCP Services
- Title(参考訳): Code2MCP: コードリポジトリをMPPサービスに変換する
- Authors: Chaoqian Ouyang, Ling Yue, Shimin Di, Libin Zheng, Linan Yue, Shaowu Pan, Jian Yin, Min-Ling Zhang,
- Abstract要約: Model Context Protocol (MCP)は、大規模言語モデルがどのようにツールを使用するかの標準を作成することを目的としている。
私たちは、GitHubリポジトリを機能的なMSPサービスに自動的に変換するエージェントベースのフレームワークであるCode2MCPを紹介します。
Code2MCPはバイオインフォマティクス、数学、流体力学などの科学分野におけるオープンソースの計算ライブラリの変換に成功している。
- 参考スコア(独自算出の注目度): 53.234097255779744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Model Context Protocol (MCP) aims to create a standard for how Large Language Models use tools. However, most current research focuses on selecting tools from an existing pool. A more fundamental, yet largely overlooked, problem is how to populate this pool by converting the vast number of existing software projects into MCP-compatible services. To bridge this gap, we introduce Code2MCP, an agent-based framework that automatically transforms a GitHub repository into a functional MCP service with minimal human intervention. Code2MCP employs a multi-agent workflow for code analysis, environment setup, tool function design, and service generation, enhanced by a self-correcting loop to ensure reliability. We demonstrate that Code2MCP successfully transforms open-source computing libraries in scientific fields such as bioinformatics, mathematics, and fluid dynamics that are not available in existing MCP servers. By providing a novel automated pathway to unlock GitHub, the world's largest code repository, for the MCP ecosystem, Code2MCP serves as a catalyst to significantly accelerate the protocol's adoption and practical application. The code is public at https://github.com/DEFENSE-SEU/Code2MCP.
- Abstract(参考訳): Model Context Protocol(MCP)は、大規模言語モデルがどのようにツールを使用するかの標準を作成することを目的としている。
しかし、現在の研究は、既存のプールからツールを選択することに焦点を当てている。
根本的な問題は、既存のソフトウェアプロジェクトの多くをMPP互換のサービスに変換することで、このプールをどうやって初期化するかである。
このギャップを埋めるために、私たちは、GitHubリポジトリを人間の介入を最小限にして機能的なMSPサービスに自動的に変換するエージェントベースのフレームワークであるCode2MCPを紹介します。
Code2MCPはコード解析、環境設定、ツール機能設計、サービス生成のためのマルチエージェントワークフローを採用しており、信頼性を確保するために自己修正ループによって強化されている。
我々は,既存のMSPサーバでは利用できないバイオインフォマティクス,数学,流体力学などの科学分野において,オープンソースコンピューティングライブラリの変換に成功したことを実証した。
世界最大のコードリポジトリであるGitHubをMSPエコシステムにアンロックする新たな自動化パスを提供することで、Code2MCPはプロトコルの採用と実用性を著しく加速する触媒として機能する。
コードはhttps://github.com/DEFENSE-SEU/Code2MCPで公開されている。
関連論文リスト
- LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools? [50.60770039016318]
モデルコンテキストプロトコル(MCP)エージェントをベンチマークする最初の総合ベンチマークであるLiveMCPBenchを紹介する。
LiveMCPBenchは、MPPエコシステムに根ざした95の現実世界のタスクで構成されている。
評価は10の先行モデルを対象としており、最高の性能のモデルが78.95%の成功率に達した。
論文 参考訳(メタデータ) (2025-08-03T14:36:42Z) - AgentMesh: A Cooperative Multi-Agent Generative AI Framework for Software Development Automation [0.0]
ソフトウェア開発タスクの自動化に複数のLCMエージェントを併用したPythonベースのフレームワークを提案する。
AgentMeshでは、Planner、Coder、Debugger、Reviewerといった特殊なエージェントが協力して、ハイレベルな要件を完全に実現されたコードに変換する。
論文 参考訳(メタデータ) (2025-07-26T10:10:02Z) - Making REST APIs Agent-Ready: From OpenAPI to Model Context Protocol Servers for Tool-Augmented LLMs [0.0]
OpenAPI 2.0/3.0仕様からMPPサーバを生成するコンパイラであるAutoMCPを提案する。
10以上のドメインにまたがる5,066のエンドポイントにまたがる50の現実世界API上でAutoMCPを評価する。
論文 参考訳(メタデータ) (2025-07-21T20:20:31Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
自動MAS設計のための自己進化型推論時間フレームワークMAS-ZEROを紹介する。
MAS-ZEROはメタレベルの設計を採用し、各問題インスタンスに適したMAS構成を反復的に生成し、評価し、洗練する。
論文 参考訳(メタデータ) (2025-05-21T00:56:09Z) - LLM-Generated Microservice Implementations from RESTful API Definitions [3.740584607001637]
本稿では,Large Language Models (LLMs) を用いて,APIファーストのソフトウェア開発を自動化するシステムを提案する。
システムはOpenAPI仕様を生成し、そこからサーバコードを生成し、実行ログとエラーメッセージを分析するフィードバックループを通じてコードを精査する。
このシステムは、ソフトウェア開発サイクルをスピードアップする上で、ソフトウェア開発者、アーキテクト、組織に利益をもたらす可能性がある。
論文 参考訳(メタデータ) (2025-02-13T20:50:33Z) - MOSS: Enabling Code-Driven Evolution and Context Management for AI Agents [7.4159044558995335]
動的コンテキスト管理システムとコード生成を統合する新しいフレームワークであるMOSS(llM-oriented Operating System Simulation)を紹介する。
フレームワークの中核は、最小限の知識原則を強制するために、インバージョン・オブ・コントロールコンテナとデコレータを併用する。
我々は,このフレームワークがエージェント開発における効率性と能力をいかに向上させるかを示し,チューリング完全エージェントへの移行におけるその優位性を強調した。
論文 参考訳(メタデータ) (2024-09-24T14:30:21Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。