論文の概要: Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
- arxiv url: http://arxiv.org/abs/2509.06338v1
- Date: Mon, 08 Sep 2025 05:00:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.98014
- Title: Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
- Title(参考訳): 毒の埋め込み:セマンティックシフトの埋め込みによる安全アライメントの回避
- Authors: Shuai Yuan, Zhibo Zhang, Yuxi Li, Guangdong Bai, Wang Kailong,
- Abstract要約: この研究は、モデルウェイトや入力テキストを変更することなく、埋め込み層出力に直接知覚不能な摂動を注入することで脆弱性を利用する、新しいデプロイメントフェーズ攻撃のクラスを特定する。
本稿では,リスクトークンに関連付けられた埋め込みに注意深く最適化された摂動を導入する,実用的なモデルに依存しないフレームワークである検索ベースの埋め込みポジショニングを提案する。
- 参考スコア(独自算出の注目度): 23.0914017433021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread distribution of Large Language Models (LLMs) through public platforms like Hugging Face introduces significant security challenges. While these platforms perform basic security scans, they often fail to detect subtle manipulations within the embedding layer. This work identifies a novel class of deployment phase attacks that exploit this vulnerability by injecting imperceptible perturbations directly into the embedding layer outputs without modifying model weights or input text. These perturbations, though statistically benign, systematically bypass safety alignment mechanisms and induce harmful behaviors during inference. We propose Search based Embedding Poisoning(SEP), a practical, model agnostic framework that introduces carefully optimized perturbations into embeddings associated with high risk tokens. SEP leverages a predictable linear transition in model responses, from refusal to harmful output to semantic deviation to identify a narrow perturbation window that evades alignment safeguards. Evaluated across six aligned LLMs, SEP achieves an average attack success rate of 96.43% while preserving benign task performance and evading conventional detection mechanisms. Our findings reveal a critical oversight in deployment security and emphasize the urgent need for embedding level integrity checks in future LLM defense strategies.
- Abstract(参考訳): Hugging Faceのような公開プラットフォームによるLarge Language Models(LLM)の普及は、重大なセキュリティ上の課題をもたらす。
これらのプラットフォームは基本的なセキュリティスキャンを実行するが、埋め込み層内の微妙な操作を検出するのに失敗することが多い。
この研究は、モデルウェイトや入力テキストを変更することなく、埋め込み層出力に直接、知覚不能な摂動を注入することで、この脆弱性を利用する、新しいデプロイメントフェーズ攻撃のクラスを特定する。
これらの摂動は統計的に良性ではあるが、安全アライメント機構を体系的にバイパスし、推論中に有害な行動を引き起こす。
本稿では,リスクトークンに関連付けられた埋め込みに注意深く最適化された摂動を導入する,実用的,モデルに依存しないフレームワークである検索ベースの埋め込みポジショニング(SEP)を提案する。
SEPは、拒絶から有害な出力から意味的偏差まで、モデル応答の予測可能な線形遷移を利用して、アライメントセーフガードを回避する狭い摂動窓を特定する。
6つのLCMで評価され、SEPは平均攻撃成功率96.43%を達成し、良質なタスク性能を維持し、従来の検出メカニズムを回避する。
本研究は, 今後のLCM防衛戦略に, 組込みレベルの整合性チェックを緊急に必要とすることを強調する。
関連論文リスト
- Preliminary Investigation into Uncertainty-Aware Attack Stage Classification [81.28215542218724]
この研究は、不確実性の下での攻撃段階推論の問題に対処する。
Evidential Deep Learning (EDL) に基づく分類手法を提案し、ディリクレ分布のパラメータを可能な段階に出力することで予測の不確実性をモデル化する。
シミュレーション環境における予備実験により,提案モデルが精度良く攻撃の段階を推定できることが実証された。
論文 参考訳(メタデータ) (2025-08-01T06:58:00Z) - Circumventing Safety Alignment in Large Language Models Through Embedding Space Toxicity Attenuation [13.971909819796762]
大規模言語モデル(LLM)は、医療、教育、サイバーセキュリティといった分野で大きな成功を収めている。
埋め込み空間中毒は、敵が入力データの内部意味表現を操作して安全アライメント機構をバイパスする微妙な攻撃ベクトルである。
本稿では,線形変換による埋め込み空間における毒性感受性次元の同定と減衰を行う新しいフレームワークETTAを提案する。
論文 参考訳(メタデータ) (2025-07-08T03:01:00Z) - Probing the Robustness of Large Language Models Safety to Latent Perturbations [30.16804362984161]
安全アライメントは、信頼できる人工知能を構築する上で重要な要件である。
我々は、小さな潜伏シフトが、整列モデルにおける安全でない応答を引き起こすことを観察する。
学習中に隠された表現に制御された摂動を注入する微調整戦略であるLayer-wise Adversarial Patch Training (LAPT)を導入する。
論文 参考訳(メタデータ) (2025-06-19T07:03:05Z) - Exposing the Ghost in the Transformer: Abnormal Detection for Large Language Models via Hidden State Forensics [5.384257830522198]
重要なアプリケーションにおける大規模言語モデル(LLM)は、重大な信頼性とセキュリティリスクを導入している。
これらの脆弱性は悪意あるアクターによって武器化され、不正アクセス、広範囲にわたる誤報、システムの完全性を侵害した。
本研究では,LLMの異常な挙動を隠蔽法で検出する手法を提案する。
論文 参考訳(メタデータ) (2025-04-01T05:58:14Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
大規模言語モデル(LLM)の既存のトレーニング時間安全アライメント技術は、ジェイルブレイク攻撃に対して脆弱なままである。
本研究では,DPOの目的を2つの構成要素にまとめる安全アライメントの改善について提案する。(1) 安全でない世代が部分的に発生しても拒否を促す頑健な拒絶訓練,(2) 有害な知識の未学習。
論文 参考訳(メタデータ) (2025-03-05T18:01:05Z) - Palisade -- Prompt Injection Detection Framework [0.9620910657090188]
大規模言語モデルは、悪意のあるインジェクション攻撃に対して脆弱である。
本稿では,新しいNLPを用いたインジェクション検出手法を提案する。
階層化された入力スクリーニングプロセスを通じて精度と最適化を強調する。
論文 参考訳(メタデータ) (2024-10-28T15:47:03Z) - Safety Layers in Aligned Large Language Models: The Key to LLM Security [43.805905164456846]
整列 LLM の内部パラメータは、微調整攻撃を受けた場合のセキュリティ劣化に対して脆弱である。
我々の研究は、パラメータレベルでのLLMの整列化におけるセキュリティのメカニズムを明らかにし、モデルの中央に小さな連続した層を識別する。
そこで本稿では, 安全部分調整(SPPFT)方式を提案する。
論文 参考訳(メタデータ) (2024-08-30T04:35:59Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
悪意のある命令から脅威を守るために、LLM(Large Language Models)には安全アライメントが不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
大型言語モデル(LLM)における安全バックドア攻撃は、正常な相互作用中の検出を回避しながら、安全でない振る舞いをステルス的に引き起こすことができる。
モデル埋め込み空間において,バックドアトリガーが比較的均一なドリフトを引き起こすという知見を活かした緩和手法であるBEEARを提案する。
両レベル最適化手法は、不要な振る舞いを誘発する普遍的な埋め込み摂動を特定し、モデルパラメータを調整し、これらの摂動に対する安全な振舞いを強化する。
論文 参考訳(メタデータ) (2024-06-24T19:29:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。