論文の概要: Imitative Membership Inference Attack
- arxiv url: http://arxiv.org/abs/2509.06796v1
- Date: Mon, 08 Sep 2025 15:27:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.216212
- Title: Imitative Membership Inference Attack
- Title(参考訳): Imitative Membership Inference Attack
- Authors: Yuntao Du, Yuetian Chen, Hanshen Xiao, Bruno Ribeiro, Ninghui Li,
- Abstract要約: メンバーシップ推論攻撃(MIA)は、ターゲット機械学習モデルがトレーニングデータについてどれだけの頻度で明らかにするかを評価する。
本報告では,Imitative Membership Inference Attack (IMIA)を導入し,新たな模倣訓練手法を用いて,少数の標的情報を用いた模倣モデルを戦略的に構築する。
IMIAは様々な攻撃環境において既存のMIAを大幅に上回り、最先端アプローチの計算コストの5%以下しか必要としない。
- 参考スコア(独自算出の注目度): 13.939679908006495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A Membership Inference Attack (MIA) assesses how much a target machine learning model reveals about its training data by determining whether specific query instances were part of the training set. State-of-the-art MIAs rely on training hundreds of shadow models that are independent of the target model, leading to significant computational overhead. In this paper, we introduce Imitative Membership Inference Attack (IMIA), which employs a novel imitative training technique to strategically construct a small number of target-informed imitative models that closely replicate the target model's behavior for inference. Extensive experimental results demonstrate that IMIA substantially outperforms existing MIAs in various attack settings while only requiring less than 5% of the computational cost of state-of-the-art approaches.
- Abstract(参考訳): メンバーシップ推論攻撃(MIA)は、特定のクエリインスタンスがトレーニングセットの一部であるかどうかを判断することで、ターゲット機械学習モデルがトレーニングデータについてどれだけの頻度で明らかにするかを評価する。
最先端のMIAは、ターゲットモデルとは無関係に数百のシャドウモデルをトレーニングすることに依存しており、計算オーバーヘッドが大幅に増加する。
本稿では,Imitative Membership Inference Attack (IMIA)を紹介する。Imitative Membership Inference Attack (IMIA) は,新たな模倣訓練手法を用いて,ターゲットモデルの推論動作を忠実に再現する少数の模倣モデルを構築する。
IMIAは、様々な攻撃環境において既存のMIAを著しく上回り、最先端アプローチの計算コストの5%以下しか必要としないことを示した。
関連論文リスト
- EM-MIAs: Enhancing Membership Inference Attacks in Large Language Models through Ensemble Modeling [2.494935495983421]
本稿では,XGBoostをベースとしたモデルに既存のMIA技術を統合し,全体的な攻撃性能(EM-MIAs)を向上させる新しいアンサンブル攻撃法を提案する。
実験結果から,アンサンブルモデルではAUC-ROCと精度が,大規模言語モデルやデータセットを対象とする個別攻撃法と比較して有意に向上していることがわかった。
論文 参考訳(メタデータ) (2024-12-23T03:47:54Z) - Order of Magnitude Speedups for LLM Membership Inference [5.124111136127848]
大規模言語モデル(LLM)は、コンピューティングを広く革新させるという約束を持っているが、その複雑さと広範なトレーニングデータもまた、プライバシの脆弱性を露呈している。
LLMに関連する最も単純なプライバシーリスクの1つは、メンバーシップ推論攻撃(MIA)に対する感受性である。
文書がモデルのトレーニングセットに属しているか否かを判断するために,小さな量子レグレッションモデルのアンサンブルを利用する低コストMIAを提案する。
論文 参考訳(メタデータ) (2024-09-22T16:18:14Z) - Do Membership Inference Attacks Work on Large Language Models? [141.2019867466968]
メンバーシップ推論攻撃(MIA)は、特定のデータポイントがターゲットモデルのトレーニングデータのメンバーであるかどうかを予測しようとする。
我々は、Pileで訓練された言語モデルに対して、MIAの大規模評価を行い、そのパラメータは160Mから12Bまでである。
様々な LLM サイズや領域にまたがるほとんどの設定において,MIA はランダムな推測よりもほとんど優れていないことがわかった。
論文 参考訳(メタデータ) (2024-02-12T17:52:05Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
我々は要約作業に焦点をあて、会員推測(MI)攻撃について調査する。
テキストの類似性や文書修正に対するモデルの抵抗をMI信号として活用する。
我々は、MI攻撃から保護するための要約モデルの訓練と、プライバシとユーティリティの本質的にのトレードオフについて議論する。
論文 参考訳(メタデータ) (2023-10-20T05:44:39Z) - Practical Membership Inference Attacks Against Large-Scale Multi-Modal
Models: A Pilot Study [17.421886085918608]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングにデータポイントを使用したかどうかを推測することを目的としている。
これらの攻撃は、潜在的なプライバシー上の脆弱性を特定し、個人データの不正使用を検出するために使用できる。
本稿では,大規模マルチモーダルモデルに対する実用的なMIAの開発に向けて第一歩を踏み出す。
論文 参考訳(メタデータ) (2023-09-29T19:38:40Z) - MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks [65.86360607693457]
敵に事前の知識がないノンボックス攻撃は、実際的な関連性にもかかわらず、比較的過小評価されている。
本研究は,大規模ビジョン・ランゲージ・モデル(VLM)をノンボックス・アタックの実行のための代理モデルとして活用するための体系的な研究である。
理論的および実証的な分析により,バニラCLIPを直接サロゲートモデルとして適用するための識別能力の不足に起因するno-boxアタックの実行に重要な制限があることが判明した。
MF-CLIP(MF-CLIP: MF-CLIP)はCLIPのサロゲートモデルとしての有効性を高める新しいフレームワークである。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
そこで本研究では,対象モデルのトレーニングプロセス全体から,メンバシップ情報を利用する新たな攻撃手法であるシステムを提案する。
我々の攻撃は、既存の方法よりも0.1%低い偽陽性率で、少なくとも6$times$高い真陽性率を達成する。
論文 参考訳(メタデータ) (2022-08-31T16:02:26Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークする個人情報の定量化に使用される。
我々は,AUCスコアを高い精度で達成できる新たな攻撃アルゴリズムを導き,その性能に影響を及ぼすさまざまな要因を強調した。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用することができる。
論文 参考訳(メタデータ) (2021-11-18T13:31:22Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。