論文の概要: Not All Samples Are Equal: Quantifying Instance-level Difficulty in Targeted Data Poisoning
- arxiv url: http://arxiv.org/abs/2509.06896v1
- Date: Mon, 08 Sep 2025 17:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.279685
- Title: Not All Samples Are Equal: Quantifying Instance-level Difficulty in Targeted Data Poisoning
- Title(参考訳): すべてのサンプルが同等であるとは限らない: ターゲットデータポジショニングにおけるインスタンスレベルの困難を定量化する
- Authors: William Xu, Yiwei Lu, Yihan Wang, Matthew Y. R. Yang, Zuoqiu Liu, Gautam Kamath, Yaoliang Yu,
- Abstract要約: ターゲットとするデータ中毒攻撃は、デプロイの容易さと高い成功率のために、ますます深刻な脅威となる。
本稿では, 目標データ中毒の予測基準として, エルゴード予測精度, 毒素距離, 毒素予算の3つを紹介する。
- 参考スコア(独自算出の注目度): 36.54354798424162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Targeted data poisoning attacks pose an increasingly serious threat due to their ease of deployment and high success rates. These attacks aim to manipulate the prediction for a single test sample in classification models. Unlike indiscriminate attacks that aim to decrease overall test performance, targeted attacks present a unique threat to individual test instances. This threat model raises a fundamental question: what factors make certain test samples more susceptible to successful poisoning than others? We investigate how attack difficulty varies across different test instances and identify key characteristics that influence vulnerability. This paper introduces three predictive criteria for targeted data poisoning difficulty: ergodic prediction accuracy (analyzed through clean training dynamics), poison distance, and poison budget. Our experimental results demonstrate that these metrics effectively predict the varying difficulty of real-world targeted poisoning attacks across diverse scenarios, offering practitioners valuable insights for vulnerability assessment and understanding data poisoning attacks.
- Abstract(参考訳): ターゲットとするデータ中毒攻撃は、デプロイの容易さと高い成功率のために、ますます深刻な脅威となる。
これらの攻撃は、分類モデルにおける単一のテストサンプルの予測を操作することを目的としている。
全体的なテストパフォーマンスの低下を目的とした無差別な攻撃とは異なり、ターゲットアタックは個々のテストインスタンスにユニークな脅威を与える。
この脅威モデルには根本的な疑問が浮かび上がっています。
我々は、異なるテストインスタンスで攻撃の難しさがどのように異なるかを調べ、脆弱性に影響を与える主要な特徴を特定する。
本稿では, 目標データ中毒の予測基準として, エルゴディック予測精度(クリーントレーニングダイナミックスによる解析) , 毒距離, 毒予算の3つを紹介する。
実験の結果、これらの指標は、様々なシナリオにわたる現実の標的毒攻撃の難易度を効果的に予測し、実践者が脆弱性評価やデータ中毒攻撃の理解に有用な洞察を提供することを示した。
関連論文リスト
- Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - IDEA: Invariant Defense for Graph Adversarial Robustness [60.0126873387533]
敵攻撃に対する不変因果判定法(IDEA)を提案する。
我々は,情報理論の観点から,ノードと構造に基づく分散目標を導出する。
実験によると、IDEAは5つのデータセットすべてに対する5つの攻撃に対して、最先端の防御性能を達成している。
論文 参考訳(メタデータ) (2023-05-25T07:16:00Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
アドリアックは、入力サンプルに小さな、知覚不能な摂動を挿入し、ディープラーニングモデルの出力に大きな、望ましくない変化を引き起こす。
本研究は, 対人攻撃に最も影響を受けやすいサンプルを同定することを目的とした, サンプル攻撃可能性の概念を紹介する。
本研究では,未知のターゲットモデルに対する未知のデータセットにおいて,逆攻撃可能で頑健なサンプルを識別するディープラーニングベースの検出器を提案する。
論文 参考訳(メタデータ) (2023-01-30T13:58:14Z) - Amplifying Membership Exposure via Data Poisoning [18.799570863203858]
本稿では,データ中毒の第3タイプについて検討し,良心的トレーニングサンプルのプライバシー漏洩リスクを高めることを目的とした。
そこで本研究では,対象クラスの加入者への露出を増幅するために,データ中毒攻撃のセットを提案する。
この結果から,提案手法は,テスト時間モデルの性能劣化を最小限に抑えることで,メンバーシップ推定精度を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-01T13:52:25Z) - De-Pois: An Attack-Agnostic Defense against Data Poisoning Attacks [17.646155241759743]
De-Poisは、中毒攻撃に対する攻撃に依存しない防御です。
我々は,4種類の毒殺攻撃を実施,5種類の典型的な防御方法を用いてデポアを評価する。
論文 参考訳(メタデータ) (2021-05-08T04:47:37Z) - DeepPoison: Feature Transfer Based Stealthy Poisoning Attack [2.1445455835823624]
DeepPoisonは、1つの発電機と2つの識別器の斬新な敵対ネットワークです。
DeepPoisonは最先端の攻撃成功率を91.74%まで達成できる。
論文 参考訳(メタデータ) (2021-01-06T15:45:36Z) - Poison Attacks against Text Datasets with Conditional Adversarially
Regularized Autoencoder [78.01180944665089]
本稿では,自然言語推論(NLI)とテキスト分類システムにおいて致命的な脆弱性を示す。
我々はNLPモデルに対する「バックドア中毒」攻撃を提示する。
論文 参考訳(メタデータ) (2020-10-06T13:03:49Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z) - Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and
Data Poisoning Attacks [74.88735178536159]
データ中毒は、モデル盗難から敵の攻撃まで、脅威の中で一番の懸念事項だ。
データ中毒やバックドア攻撃は、テスト設定のバリエーションに非常に敏感である。
厳格なテストを適用して、それらを恐れるべき程度を判断します。
論文 参考訳(メタデータ) (2020-06-22T18:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。