論文の概要: Reinforcement learning for online hyperparameter tuning in convex quadratic programming
- arxiv url: http://arxiv.org/abs/2509.07404v1
- Date: Tue, 09 Sep 2025 05:33:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.189687
- Title: Reinforcement learning for online hyperparameter tuning in convex quadratic programming
- Title(参考訳): 凸二次プログラミングにおけるオンラインハイパーパラメータチューニングのための強化学習
- Authors: Jeremy Bertoncini, Alberto De Marchi, Matthias Gerdts, Simon Gottschalk,
- Abstract要約: 安定なインテリア・ポイント・ソルバに着目し,その2ループフローと制御パラメータを扱う。
強化学習がソルバチューニングや最適化プロセスの高速化に大きく貢献できることを示します。
- 参考スコア(独自算出の注目度): 0.7939705978268443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quadratic programming is a workhorse of modern nonlinear optimization, control, and data science. Although regularized methods offer convergence guarantees under minimal assumptions on the problem data, they can exhibit the slow tail-convergence typical of first-order schemes, thus requiring many iterations to achieve high-accuracy solutions. Moreover, hyperparameter tuning significantly impacts on the solver performance but how to find an appropriate parameter configuration remains an elusive research question. To address these issues, we explore how data-driven approaches can accelerate the solution process. Aiming at high-accuracy solutions, we focus on a stabilized interior-point solver and carefully handle its two-loop flow and control parameters. We will show that reinforcement learning can make a significant contribution to facilitating the solver tuning and to speeding up the optimization process. Numerical experiments demonstrate that, after a lightweight training, the learned policy generalizes well to different problem classes with varying dimensions and to various solver configurations.
- Abstract(参考訳): 二次プログラミングは、現代的な非線形最適化、制御、データサイエンスの成果である。
正規化法は問題データに最小限の仮定で収束を保証するが、1次スキームに典型的な緩やかなテール収束を示すことができ、高い精度の解を達成するために多くの反復を必要とする。
さらに、ハイパーパラメータチューニングはソルバ性能に大きく影響するが、適切なパラメータ構成を見つける方法については、いまだ明白な研究課題である。
これらの問題に対処するために、データ駆動アプローチがソリューションプロセスをどのように加速するかを考察する。
高精度な解を目指すため,安定な内点解法に着目し,その2ループフローと制御パラメータを慎重に処理する。
我々は、強化学習がソルバチューニングの容易化と最適化プロセスの高速化に重要な貢献をすることを示す。
数値実験により, 学習方針は, 軽量な学習の後, 様々な次元の異なる問題クラスや, 様々な解法構成に対してよく一般化されることを示した。
関連論文リスト
- On improving generalization in a class of learning problems with the method of small parameters for weakly-controlled optimal gradient systems [0.0]
制御入力が非線形項の係数としてシステム力学に入力される弱制御勾配系の変分問題を考える。
摂動理論を用いて、最適化問題の列を解くことができる結果を提供する。
また、そのような近似最適解に対する収束率を推定する。
論文 参考訳(メタデータ) (2024-12-11T20:50:29Z) - Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
制約付き最適化のための学習型反復解法を提案する。
解法を特定のパラメトリック最適化問題にカスタマイズすることで、非常に高速で正確な解を得ることができる。
最適性のKarush-Kuhn-Tucker条件に基づく新しい損失関数を導入し、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-09-12T14:17:23Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Neural Solvers for Fast and Accurate Numerical Optimal Control [12.80824586913772]
本稿では,固定的な計算予算が与えられた場合,最適化された制御ポリシーの品質を向上させるための技術を提供する。
我々は、微分方程式解法とニューラルネットワークをハイブリダイズする超解法アプローチにより、上記のことを達成した。
論文 参考訳(メタデータ) (2022-03-13T10:46:50Z) - Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
Information [37.70729542263343]
本稿では,大規模機械学習問題に対する適応最適化アルゴリズムを提案する。
我々の手法は方向とステップサイズを動的に適応させる。
我々の手法は退屈なチューニング率チューニングを必要としない。
論文 参考訳(メタデータ) (2021-09-11T06:39:50Z) - Efficient Hyperparameter Tuning with Dynamic Accuracy Derivative-Free
Optimization [0.27074235008521236]
我々は,最近の動的精度微分自由最適化法をハイパーパラメータチューニングに適用する。
この方法は、収束保証を維持しながら、学習問題の不正確な評価を可能にする。
固定精度アプローチと比較して頑健さと効率性を実証する。
論文 参考訳(メタデータ) (2020-11-06T00:59:51Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
オンラインアルゴリズムは、大規模なバッチにデータを保存したり処理したりすることなく、リアルタイムで更新を計算できるため、大規模な学習環境で人気がある。
一定のステップサイズを使用すると、これらのアルゴリズムはデータやモデル特性などの問題パラメータのドリフトに適応し、適切な精度で最適解を追跡する能力を持つ。
定常仮定に基づく定常状態性能とランダムウォークモデルによるオンライン学習者の追跡性能の関連性を確立する。
論文 参考訳(メタデータ) (2020-04-04T14:16:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。