論文の概要: Self-Supervised Learning of Iterative Solvers for Constrained Optimization
- arxiv url: http://arxiv.org/abs/2409.08066v1
- Date: Thu, 12 Sep 2024 14:17:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:17:53.649070
- Title: Self-Supervised Learning of Iterative Solvers for Constrained Optimization
- Title(参考訳): 制約付き最適化のための反復解の自己教師付き学習
- Authors: Lukas Lüken, Sergio Lucia,
- Abstract要約: 制約付き最適化のための学習型反復解法を提案する。
解法を特定のパラメトリック最適化問題にカスタマイズすることで、非常に高速で正確な解を得ることができる。
最適性のKarush-Kuhn-Tucker条件に基づく新しい損失関数を導入し、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining the solution of constrained optimization problems as a function of parameters is very important in a multitude of applications, such as control and planning. Solving such parametric optimization problems in real time can present significant challenges, particularly when it is necessary to obtain highly accurate solutions or batches of solutions. To solve these challenges, we propose a learning-based iterative solver for constrained optimization which can obtain very fast and accurate solutions by customizing the solver to a specific parametric optimization problem. For a given set of parameters of the constrained optimization problem, we propose a first step with a neural network predictor that outputs primal-dual solutions of a reasonable degree of accuracy. This primal-dual solution is then improved to a very high degree of accuracy in a second step by a learned iterative solver in the form of a neural network. A novel loss function based on the Karush-Kuhn-Tucker conditions of optimality is introduced, enabling fully self-supervised training of both neural networks without the necessity of prior sampling of optimizer solutions. The evaluation of a variety of quadratic and nonlinear parametric test problems demonstrates that the predictor alone is already competitive with recent self-supervised schemes for approximating optimal solutions. The second step of our proposed learning-based iterative constrained optimizer achieves solutions with orders of magnitude better accuracy than other learning-based approaches, while being faster to evaluate than state-of-the-art solvers and natively allowing for GPU parallelization.
- Abstract(参考訳): パラメータの関数として制約付き最適化問題の解を得ることは、制御や計画といった様々なアプリケーションにおいて非常に重要である。
このようなパラメトリック最適化問題をリアルタイムで解くことは、特に高精度な解や解のバッチを得る必要がある場合、重要な課題を提示することができる。
これらの課題を解決するために,制約付き最適化のための学習ベース反復解法を提案する。
制約付き最適化問題のパラメータのセットについて、適切な精度で原始双対解を出力するニューラルネットワーク予測器を用いた第1ステップを提案する。
この原始双対解は、ニューラルネットワークの形で学習された反復解法により、第2段階において非常に高い精度で改善される。
最適性のKarush-Kuhn-Tucker条件に基づく新たな損失関数を導入し、オプティマイザソリューションの事前サンプリングを必要とせずに、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
様々な2次および非線形パラメトリックテスト問題の評価は、予測器のみが、最適解を近似する最近の自己教師型スキームと既に競合していることを示している。
提案する学習ベース反復制約最適化の2番目のステップは、他の学習ベースアプローチよりも桁違いに精度の高いソリューションを実現すると同時に、最先端のソルバよりも高速に評価し、GPU並列化をネイティブに可能にする。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Reducing the Need for Backpropagation and Discovering Better Optima With
Explicit Optimizations of Neural Networks [4.807347156077897]
本稿では,ニューラルネットワークの最適化のための計算効率のよい代替案を提案する。
我々は、単純なフィードフォワード言語モデルに対する明確な解決策を導出する。
実験では,明示的な解がほぼ最適であることを示す。
論文 参考訳(メタデータ) (2023-11-13T17:38:07Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
逐次的意思決定問題を効率的に解決する統合予測最適化(PredOpt)フレームワークを提案する。
本稿では,機械学習(ML)における逐次依存,実現可能性,一般化といった課題に対処し,インスタンス問題に対する最適解の予測を行う。
論文 参考訳(メタデータ) (2023-11-12T21:54:53Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。