論文の概要: Self-Supervised Cross-Encoder for Neurodegenerative Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2509.07623v1
- Date: Tue, 09 Sep 2025 11:52:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.290862
- Title: Self-Supervised Cross-Encoder for Neurodegenerative Disease Diagnosis
- Title(参考訳): 神経変性疾患診断のための自己監督型クロスエンコーダ
- Authors: Fangqi Cheng, Yingying Zhao, Xiaochen Yang,
- Abstract要約: 縦型MRIスキャンにおける時間的連続性を利用した自己監督型クロスエンコーダフレームワークを提案する。
このフレームワークは、学習した表現を2つのコンポーネントに分解する: 静的表現は、対照的な学習によって制約され、安定した解剖学的特徴を捉え、動的表現は、時間的変化を反映する入力漸進正規化によってガイドされる。
アルツハイマー病神経画像イニシアチブデータセットの実験結果から,本手法は分類精度が向上し,解釈性が向上することが示された。
- 参考スコア(独自算出の注目度): 6.226851122403944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has shown significant potential in diagnosing neurodegenerative diseases from MRI data. However, most existing methods rely heavily on large volumes of labeled data and often yield representations that lack interpretability. To address both challenges, we propose a novel self-supervised cross-encoder framework that leverages the temporal continuity in longitudinal MRI scans for supervision. This framework disentangles learned representations into two components: a static representation, constrained by contrastive learning, which captures stable anatomical features; and a dynamic representation, guided by input-gradient regularization, which reflects temporal changes and can be effectively fine-tuned for downstream classification tasks. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our method achieves superior classification accuracy and improved interpretability. Furthermore, the learned representations exhibit strong zero-shot generalization on the Open Access Series of Imaging Studies (OASIS) dataset and cross-task generalization on the Parkinson Progression Marker Initiative (PPMI) dataset. The code for the proposed method will be made publicly available.
- Abstract(参考訳): 深層学習はMRIデータから神経変性疾患を診断する大きな可能性を示している。
しかし、既存のほとんどの手法は大量のラベル付きデータに依存しており、しばしば解釈可能性に欠ける表現を生成する。
両課題に対処するために,縦型MRIスキャンにおける時間的連続性を利用した自己監督型クロスエンコーダフレームワークを提案する。
このフレームワークは、学習した表現を2つのコンポーネントに分解する: 静的表現は、対照的な学習によって制約され、安定な解剖学的特徴を捉え、動的表現は、時間的変化を反映し、下流の分類タスクに効果的に微調整できる入力漸進正規化によってガイドされる。
The Alzheimer's Disease Neuroimaging Initiative (ADNI) データセットによる実験結果から,本手法は分類精度が向上し,解釈性が向上することが示された。
さらに、学習された表現は、Open Access Series of Imaging Studies (OASIS)データセットに強いゼロショットの一般化を示し、Parkinson Progression Marker Initiative (PPMI)データセットにクロスタスクの一般化を示す。
提案手法のコードは公開されている。
関連論文リスト
- HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
HDCと呼ばれる新しい半教師付きセグメンテーションフレームワークが提案されている。
この枠組みは,特徴表現の整合化のための相関誘導損失と,雑音の多い学生学習を安定化するための相互情報損失の2つの目的を持つ階層的蒸留機構を導入している。
論文 参考訳(メタデータ) (2025-04-14T04:52:24Z) - Two-Stage Representation Learning for Analyzing Movement Behavior Dynamics in People Living with Dementia [44.39545678576284]
本研究では,認知症高齢者の在宅活動データを,2段階の自己指導型学習アプローチによって分析する。
第1段階は、時系列アクティビティを事前訓練された言語モデルによって符号化されたテキストシーケンスに変換する。
このPageRankベクトルは遅延状態遷移をキャプチャし、複雑な振る舞いデータを簡潔な形式に効果的に圧縮する。
論文 参考訳(メタデータ) (2025-02-13T10:57:25Z) - Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
広範囲な手動血管アノテーションを必要とせず,ROP研究を進めるための半教師付きセグメンテーションフレームワークを提案する。
ラベル付きデータにのみ依存する従来の手法とは異なり,本手法では不確実性重み付き容器公開モジュールとドメイン対向学習を統合している。
我々は、パブリックデータセットと社内ROPデータセットに対するアプローチを検証し、複数の評価指標で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-14T02:40:34Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [43.73298205923969]
早期発症アルツハイマー病 (AD) と軽度認知障害 (MCI) をコントロールから識別するために, 網膜光コヒーレンストモグラフィー (OCTA) を用いた新しいPolarNet+を提案する。
提案手法は,まずカルト座標から極座標へのOCTA画像のマッピングを行う。
次に,包括的かつ臨床的に有用な情報抽出のための3次元画像のシリアライズと解析を行う多視点モジュールを提案する。
論文 参考訳(メタデータ) (2024-08-09T15:10:34Z) - Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection [10.953610196636784]
本稿では,肺腔エッジ抽出に基づく Contour Attention Preserving (CAP) 法を提案する。
実験結果から, 本手法は, 複数の対角防御および一般化タスクにおいて, 最先端の性能を実現することが示唆された。
論文 参考訳(メタデータ) (2022-11-30T08:01:23Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
出生前アルコール曝露による胎児アルコール症候群(FAS)は、一連の頭蓋顔面異常を引き起こす可能性がある。
解剖学的ランドマーク検出は,FAS関連顔面異常の検出に重要である。
自然画像における顔のランドマーク検出のために設計された現在のディープラーニングに基づく熱マップ回帰法は、大きなデータセットが利用できることを前提としている。
我々は,大規模な顔認識データセットから学習したネットワークの知識を活用する,新たな正規化トランスファー学習手法を開発した。
論文 参考訳(メタデータ) (2021-09-12T11:05:06Z) - MG-NET: Leveraging Pseudo-Imaging for Multi-Modal Metagenome Analysis [5.04905391284093]
本稿では,自己教師型表現学習フレームワークMG-Netを提案する。
MG-Netはラベルのないデータからロバストな表現を学習できることを示す。
実験により、学習した特徴が現在のベースラインメタジェノム表現より優れていることが示された。
論文 参考訳(メタデータ) (2021-07-21T05:53:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A
Comparative Study [43.26668942258135]
脳MRIにおけるunsupervised Anomaly Detection(UAD)の新しいアプローチ
これらの研究の主な原理は、正常なデータの圧縮と回復を学ぶことによって、正常な解剖学のモデルを学ぶことである。
概念は,医療画像分析のコミュニティにとって大きな関心事である。i) 膨大な量の手作業によるトレーニングデータの必要性から解放される。
論文 参考訳(メタデータ) (2020-04-07T11:12:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。