論文の概要: Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis
- arxiv url: http://arxiv.org/abs/2509.08007v2
- Date: Thu, 11 Sep 2025 16:30:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 13:52:32.869942
- Title: Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis
- Title(参考訳): 医用画像診断のためのエキスパートガイドによる説明可能なFew-Shotラーニング
- Authors: Ifrat Ikhtear Uddin, Longwei Wang, KC Santosh,
- Abstract要約: 本稿では,放射線技師が提案する関心領域をモデルトレーニングに統合する,専門家による説明可能な数ショット学習フレームワークを提案する。
我々は、BraTS(MRI)とVinDr-CXR(Chest X-ray)の2つの異なるデータセット上で、我々のフレームワークを評価する。
本研究は, 少数症例の医用画像診断において, 評価と解釈のギャップを埋めるために, 専門家が指導する注意指導を取り入れることの有効性を実証するものである。
- 参考スコア(独自算出の注目度): 2.7946918847372277
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image analysis often faces significant challenges due to limited expert-annotated data, hindering both model generalization and clinical adoption. We propose an expert-guided explainable few-shot learning framework that integrates radiologist-provided regions of interest (ROIs) into model training to simultaneously enhance classification performance and interpretability. Leveraging Grad-CAM for spatial attention supervision, we introduce an explanation loss based on Dice similarity to align model attention with diagnostically relevant regions during training. This explanation loss is jointly optimized with a standard prototypical network objective, encouraging the model to focus on clinically meaningful features even under limited data conditions. We evaluate our framework on two distinct datasets: BraTS (MRI) and VinDr-CXR (Chest X-ray), achieving significant accuracy improvements from 77.09% to 83.61% on BraTS and from 54.33% to 73.29% on VinDr-CXR compared to non-guided models. Grad-CAM visualizations further confirm that expert-guided training consistently aligns attention with diagnostic regions, improving both predictive reliability and clinical trustworthiness. Our findings demonstrate the effectiveness of incorporating expert-guided attention supervision to bridge the gap between performance and interpretability in few-shot medical image diagnosis.
- Abstract(参考訳): 医用画像解析は、専門家による注釈付きデータに制限があり、モデル一般化と臨床応用の両方を妨げるため、しばしば重大な課題に直面している。
本稿では,放射線技師が提案する関心領域(ROI)をモデルトレーニングに統合し,分類性能と解釈可能性の同時向上を図る。
空間的注意管理のためのGrad-CAMを活用し,Dice類似性に基づく説明損失を導入し,トレーニング中のモデル注意を診断関連領域と整合させる。
この説明損失は、標準的なプロトタイプネットワークの目的と共同で最適化され、限られたデータ条件下でも臨床的に有意義な特徴に焦点を合わせることが奨励される。
我々はBraTS(MRI)とVinDr-CXR(Chest X-ray)の2つの異なるデータセットでフレームワークを評価し、BraTSでは77.09%から83.61%、非誘導モデルでは54.33%から73.29%の精度向上を実現した。
Grad-CAMビジュアライゼーションは、専門家が指導するトレーニングが診断領域に一貫して注意を集中させ、予測信頼性と臨床信頼性の両方を改善していることをさらに確認する。
本研究は, 少数症例の医用画像診断において, 評価と解釈のギャップを埋めるために, 専門家が指導する注意指導を取り入れることの有効性を実証するものである。
関連論文リスト
- Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
既存の方法は、モデル構造を調整したり、高品質なデータで微調整したり、好みの微調整によって、医療ビジョン言語モデル(MedVLM)の性能を向上させることを目的としている。
我々は,MedVLMと臨床専門知識の連携を図るために,Expert-Controlled-Free Guidance (Expert-CFG) という,ループ内のエキスパート・イン・ザ・ループフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-12T09:03:30Z) - Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data [0.0]
本研究では,SIGLIPとGemma-3bアーキテクチャを併用したVLM(Vision-Language Model)を提案する。
VLMは胸部X線からの視覚データを臨床コンテキストと組み合わせて、詳細なコンテキスト認識診断レポートを生成する。
結石,空洞,結節などの急性TBの病態は,高い精度とリコールで検出された。
論文 参考訳(メタデータ) (2025-03-17T14:08:35Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
本稿では, 構造的磁気共鳴画像(sMRI)に基づく自閉症スペクトラム障害の診断を, 異常検出手法を用いて提案する。
GAN(Generative Adversarial Network)は、健康な被験者のsMRIスキャンでのみ訓練される。
実験の結果、ASD検出フレームワークは最先端のトレーニングデータと互換性があり、トレーニングデータもはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-02-21T04:37:25Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
タスクに対する入力特徴の臨床的関連性を解釈する,解釈可能なグラフ学習モデルを提案する。
臨床シナリオでは、そのようなモデルは、臨床専門家が診断および治療計画のためのより良い意思決定を支援することができる。
本研究では,Tadpoleの平均精度が3.2%,UKBBジェンダーが1.6%,UKBB年齢予測タスクが2%と,比較方法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-29T13:04:02Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
X線画像のコンピュータ診断において位置病変は重要である。
一般に弱教師付き手法はX線像の特性を考慮できなかった。
自動病変検出の性能を向上させるCross-chest Graph (CCG)を提案する。
論文 参考訳(メタデータ) (2021-01-22T08:24:04Z) - Advancing diagnostic performance and clinical usability of neural
networks via adversarial training and dual batch normalization [2.1699022621790736]
6人の放射線学者がX線、CT、磁気共鳴画像スキャンのデータセットにおける塩分濃度マップの解釈可能性を評価する。
その結果, 十分大きなデータセットと二重バッチノルムを用いた場合, 逆学習モデルの精度は標準モデルに等しいことがわかった。
論文 参考訳(メタデータ) (2020-11-25T20:41:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。