論文の概要: Forecasting Generative Amplification
- arxiv url: http://arxiv.org/abs/2509.08048v1
- Date: Tue, 09 Sep 2025 18:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.215786
- Title: Forecasting Generative Amplification
- Title(参考訳): 予測生成増幅
- Authors: Henning Bahl, Sascha Diefenbacher, Nina Elmer, Tilman Plehn, Jonas Spinner,
- Abstract要約: 本研究では,大容量データセットを使わずに増幅係数を推定する2つの相補的手法を提案する。
どちらの手法も、位相空間の特定の領域では増幅が可能であるが、分布全体にわたってはまだ不可能であることを示している。
- 参考スコア(独自算出の注目度): 1.0874100424278175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative networks are perfect tools to enhance the speed and precision of LHC simulations. It is important to understand their statistical precision, especially when generating events beyond the size of the training dataset. We present two complementary methods to estimate the amplification factor without large holdout datasets. Averaging amplification uses Bayesian networks or ensembling to estimate amplification from the precision of integrals over given phase-space volumes. Differential amplification uses hypothesis testing to quantify amplification without any resolution loss. Applied to state-of-the-art event generators, both methods indicate that amplification is possible in specific regions of phase space, but not yet across the entire distribution.
- Abstract(参考訳): 生成ネットワークは、LHCシミュレーションの速度と精度を高めるのに最適なツールである。
特にトレーニングデータセットのサイズを超えてイベントを生成する場合には、その統計的精度を理解することが重要です。
本研究では,大容量データセットを使わずに増幅係数を推定する2つの相補的手法を提案する。
平均増幅はベイズネットワークまたはアンサンブルを用いて、与えられた位相空間体積上の積分の精度から増幅を推定する。
微分増幅は、仮説テストを用いて、分解能損失を伴わずに増幅を定量化する。
最先端のイベントジェネレータに適用すると、どちらの手法も増幅は位相空間の特定の領域で可能であるが、分布全体にわたってはまだ可能であることを示している。
関連論文リスト
- Low-dimensional adaptation of diffusion models: Convergence in total variation [13.218641525691195]
拡散生成モデルが(未知の)低次元構造をどのように活用してサンプリングを高速化するかを検討する。
本研究はDDIM型試料試料の未知の低次元構造への適応性を示す最初の厳密な証拠である。
論文 参考訳(メタデータ) (2025-01-22T16:12:33Z) - DPBridge: Latent Diffusion Bridge for Dense Prediction [49.1574468325115]
DPBridgeは、密度予測タスクのための最初の潜伏拡散ブリッジフレームワークである。
提案手法は,異なるシナリオ下での有効性と能力の一般化を実証し,優れた性能を継続的に達成する。
論文 参考訳(メタデータ) (2024-12-29T15:50:34Z) - Building Conformal Prediction Intervals with Approximate Message Passing [14.951392270119461]
等角予測は、分布のない方法で有効な予測間隔を構築するための強力なツールである。
本稿では,予測間隔の計算を高速化するために,AMP(Adroximate Message Passing)に基づく新しいアルゴリズムを提案する。
提案手法では,基準値に近い予測間隔が生成され,精度は桁違いに向上した。
論文 参考訳(メタデータ) (2024-10-21T20:34:33Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
近年のテキスト・トゥ・イメージ(T2I)拡散モデルでは、既成の高密度予測器では予測できないことがある。
我々は,事前学習したT2Iモデルを用いたパイプラインDMPを,高密度予測タスクの先駆けとして導入する。
限られたドメインのトレーニングデータにもかかわらず、この手法は任意の画像に対して忠実に推定し、既存の最先端のアルゴリズムを超越する。
論文 参考訳(メタデータ) (2023-11-30T18:59:44Z) - Efficient expectation propagation for posterior approximation in
high-dimensional probit models [1.433758865948252]
ベイジアンプロビット回帰における後部分布の予測伝搬(EP)近似に着目した。
拡張多変量スキュー正規分布における結果の活用方法を示し,EPルーチンの効率的な実装を導出する。
これにより、EPは、詳細なシミュレーション研究で示されているように、高次元設定に挑戦する上でも実現可能である。
論文 参考訳(メタデータ) (2023-09-04T14:07:19Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。