論文の概要: Leveraging AI Agents for Autonomous Networks: A Reference Architecture and Empirical Studies
- arxiv url: http://arxiv.org/abs/2509.08312v1
- Date: Wed, 10 Sep 2025 06:24:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.325556
- Title: Leveraging AI Agents for Autonomous Networks: A Reference Architecture and Empirical Studies
- Title(参考訳): 自律型ネットワークのためのAIエージェントの活用 - 参照アーキテクチャと実証的研究
- Authors: Binghan Wu, Shoufeng Wang, Yunxin Liu, Ya-Qin Zhang, Joseph Sifakis, Ye Ouyang,
- Abstract要約: この研究は、ジョゼフ・シファキス(Joseph Sifakis)のAN Agent参照アーキテクチャを機能認知システムに実装することで、アーキテクチャ理論と運用現実のギャップを埋める。
5G NR sub-6 GHz において,サブ10ms のリアルタイム制御を実演し,外ループリンク適応 (OLLA) アルゴリズムよりも6% 高いダウンリンクスループットを実現した。
これらの改善により、従来の自律的障壁を克服し、次世代の目標に向けて重要なL4エナリング能力を推し進めるアーキテクチャの生存性が確認される。
- 参考スコア(独自算出の注目度): 18.534083337294188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution toward Level 4 (L4) Autonomous Networks (AN) represents a strategic inflection point in telecommunications, where networks must transcend reactive automation to achieve genuine cognitive capabilities--fulfilling TM Forum's vision of self-configuring, self-healing, and self-optimizing systems that deliver zero-wait, zero-touch, and zero-fault services. This work bridges the gap between architectural theory and operational reality by implementing Joseph Sifakis's AN Agent reference architecture in a functional cognitive system, deploying coordinated proactive-reactive runtimes driven by hybrid knowledge representation. Through an empirical case study of a Radio Access Network (RAN) Link Adaptation (LA) Agent, we validate this framework's transformative potential: demonstrating sub-10 ms real-time control in 5G NR sub-6 GHz while achieving 6% higher downlink throughput than Outer Loop Link Adaptation (OLLA) algorithms and 67% Block Error Rate (BLER) reduction for ultra-reliable services through dynamic Modulation and Coding Scheme (MCS) optimization. These improvements confirm the architecture's viability in overcoming traditional autonomy barriers and advancing critical L4-enabling capabilities toward next-generation objectives.
- Abstract(参考訳): レベル4(L4) 自律ネットワーク(AN)への進化は、真の認知能力を達成するためには、ネットワークがリアクティブな自動化を超越しなければならない、通信における戦略的インフレクションポイントを表している。
この研究は、Joseph Sifakis氏のAN Agent参照アーキテクチャを機能認知システムに実装し、ハイブリッド知識表現によって駆動される協調された能動型ランタイムをデプロイすることで、アーキテクチャ理論と運用現実のギャップを埋める。
無線アクセスネットワーク (RAN) リンク適応 (LA) エージェントの実証ケーススタディにより, 5G NR sub-6 GHz で Sub-10 ms のリアルタイム制御を示すとともに, 動的変調および符号化方式 (MCS) 最適化による超信頼性サービスに対する BLER (Block Error Rate) の67% の削減を実現した。
これらの改善により、従来の自律的障壁を克服し、次世代の目標に向けて重要なL4エナリング能力を推し進めるアーキテクチャの生存性が確認される。
関連論文リスト
- AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
人工知能(AI)と機械学習(ML)モデルは、5Gラジオアクセスネットワーク(RAN)を急速に浸透させている
これらの開発は、AIネイティブなトランシーバーを6Gのキーイネーブルとして基盤を築いた。
論文 参考訳(メタデータ) (2025-07-24T16:04:59Z) - Symbiotic Agents: A Novel Paradigm for Trustworthy AGI-driven Networks [1.5684305805304426]
大規模言語モデル(LLM)に基づく自律エージェントは、6Gネットワークの進化において重要な役割を果たすことが期待されている。
我々は、LLMのリアルタイム最適化アルゴリズムをTrustworthy AIに組み合わせた新しいエージェントパラダイムを導入する。
本稿では,AGIネットワークのエンドツーエンドアーキテクチャを提案し,移動車からのチャネル変動をキャプチャする5Gテストベッド上で評価する。
論文 参考訳(メタデータ) (2025-07-23T17:01:23Z) - AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
本稿では,AI-in-the-loopジョイントセンシングと通信によるエッジインテリジェンス向上のためのフレームワークを提案する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
提案手法は, 通信エネルギー消費を最大77%削減し, 試料数で測定した検知コストを最大52%削減する。
論文 参考訳(メタデータ) (2025-02-14T14:56:58Z) - RIS-empowered Topology Control for Distributed Learning in Urban Air
Mobility [35.04722426910211]
アーバン・エアモビリティ(UAM)は、輸送システムの革命として想定される、地上から地上に近い空間に車両を拡大する。
この課題を克服するために、リソース制限されたデバイスが協調的に深層学習(DL)を行うことを可能にするために、フェデレーション・ラーニング(FL)や他の協調学習が提案されている。
本稿では,分散学習を支援する再構成可能なインテリジェントサーフェス (RIS) について検討する。
論文 参考訳(メタデータ) (2024-03-08T08:05:50Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Reinforcement Learning-Based Joint Self-Optimisation Method for the
Fuzzy Logic Handover Algorithm in 5G HetNets [0.0]
5Gのヘテロジニアスネットワーク(HetNets)は、4Gマクロシステム内に大規模な小さな基地局(BSs)を配置することで、ユーザに対してより高いネットワークカバレッジとシステム容量を提供できる。
現在のハンドオーバ(HO)トリガー機構A3イベントは、マクロシステムのモビリティ管理のためにのみ設計された。
本研究は,自己組織化ネットワーク(SON)の概念に触発され,自動ネットワーク保守を実現する自己最適化トリガ機構を開発した。
論文 参考訳(メタデータ) (2020-06-09T01:52:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。