論文の概要: InsFusion: Rethink Instance-level LiDAR-Camera Fusion for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2509.08374v1
- Date: Wed, 10 Sep 2025 08:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.351113
- Title: InsFusion: Rethink Instance-level LiDAR-Camera Fusion for 3D Object Detection
- Title(参考訳): InsFusion:3Dオブジェクト検出のためのインスタンスレベルのLiDAR-Camera Fusionを再考する
- Authors: Zhongyu Xia, Hansong Yang, Yongtao Wang,
- Abstract要約: InsFusionは,生機能と融合機能の両方から提案を抽出し,これらの提案を利用して生機能に問い合わせる。
InsFusionは、様々な高度なベースラインメソッドと互換性があり、3Dオブジェクト検出のための新しい最先端のパフォーマンスを提供する。
- 参考スコア(独自算出の注目度): 12.353023636186272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Three-dimensional Object Detection from multi-view cameras and LiDAR is a crucial component for autonomous driving and smart transportation. However, in the process of basic feature extraction, perspective transformation, and feature fusion, noise and error will gradually accumulate. To address this issue, we propose InsFusion, which can extract proposals from both raw and fused features and utilizes these proposals to query the raw features, thereby mitigating the impact of accumulated errors. Additionally, by incorporating attention mechanisms applied to the raw features, it thereby mitigates the impact of accumulated errors. Experiments on the nuScenes dataset demonstrate that InsFusion is compatible with various advanced baseline methods and delivers new state-of-the-art performance for 3D object detection.
- Abstract(参考訳): 多視点カメラとLiDARによる3次元物体検出は、自動運転とスマート交通にとって重要な要素である。
しかし、基本的な特徴抽出、視点変換、特徴融合の過程では、ノイズとエラーが徐々に蓄積される。
この問題に対処するために、生と融合両方の特徴から提案を抽出し、これらの提案を利用して生の特徴を問合せ、蓄積したエラーの影響を軽減するInsFusionを提案する。
さらに、原特徴に適用される注意機構を組み込むことで、累積誤差の影響を軽減できる。
nuScenesデータセットの実験では、InsFusionは様々な高度なベースラインメソッドと互換性があり、3Dオブジェクト検出のための新しい最先端のパフォーマンスを提供する。
関連論文リスト
- IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
IAAOは知的エージェントのための明示的な3Dモデルを構築するフレームワークで,対話を通して環境内の明瞭な物体の理解を得る。
マスク特徴とビュー一貫性ラベルを多視点画像から抽出し,まず3次元ガウススティング(3DGS)を用いて各オブジェクト状態の階層的特徴とラベルフィールドを構築する。
次に、3Dガウスプリミティブ上でオブジェクトと部分レベルのクエリを実行し、静的および明瞭な要素を識別し、大域的な変換と局所的な調音パラメータをアベイランスとともに推定する。
論文 参考訳(メタデータ) (2025-04-09T12:36:48Z) - Efficient Feature Aggregation and Scale-Aware Regression for Monocular 3D Object Detection [40.14197775884804]
MonoASRHは、効率的なハイブリッド特徴集約モジュール(EH-FAM)と適応スケール対応3D回帰ヘッド(ASRH)で構成される新しいモノクル3D検出フレームワークである。
EH-FAMは、小規模オブジェクトのセマンティックな特徴を抽出するために、グローバルな受容領域を持つマルチヘッドアテンションを用いる。
ASRHは2次元境界ボックス次元を符号化し、EH-FAMで集約された意味的特徴とスケール特徴を融合する。
論文 参考訳(メタデータ) (2024-11-05T02:33:25Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - MMDR: A Result Feature Fusion Object Detection Approach for Autonomous
System [5.499393552545591]
提案手法は,MMDR (Multi-Modal Detector based based Result features) と呼ばれ,2次元と3次元の両方のオブジェクト検出タスクで動作するように設計されている。
MMDRモデルは、機能融合の段階で、浅いグローバルな特徴を取り入れ、背景情報を知覚する能力を持つモデルを提供する。
論文 参考訳(メタデータ) (2023-04-19T12:28:42Z) - DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras
and Radars [2.2166853714891057]
本研究では,ライダー,カメラ,レーダーを異なる組み合わせで融合して3次元物体検出を行うモジュール型マルチモーダルアーキテクチャを提案する。
特殊特徴抽出器は各モードの利点を生かし、容易に交換でき、アプローチをシンプルかつ柔軟にする。
Lidar-camera, lidar-camera-radar, camera-radar fusion の実験結果から, 融合法の柔軟性と有効性が確認された。
論文 参考訳(メタデータ) (2022-09-26T14:33:30Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with
Transformers [49.689566246504356]
そこで本研究では,LiDAR-カメラ融合に対するソフトアソシエーション機構による堅牢な解であるTransFusionを提案する。
TransFusionは大規模データセット上で最先端のパフォーマンスを実現する。
提案手法を3次元トラッキングタスクに拡張し,nuScenesトラッキングのリーダーボードにおける第1位を達成する。
論文 参考訳(メタデータ) (2022-03-22T07:15:13Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
LiDAR-カメラ融合に基づく3Dオブジェクト検出は、自動運転の新たな研究テーマになりつつある。
本稿では,LiDARの鳥眼ビュー,LiDARレンジビュー,カメラビューイメージを3Dオブジェクト検出の入力として利用する,単一ステージ多視点融合フレームワークを提案する。
これら2つのコンポーネントを統合するために,MVAF-Netというエンドツーエンドの学習ネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-02T00:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。