論文の概要: Sparse BEV Fusion with Self-View Consistency for Multi-View Detection and Tracking
- arxiv url: http://arxiv.org/abs/2509.08421v1
- Date: Wed, 10 Sep 2025 09:06:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.37102
- Title: Sparse BEV Fusion with Self-View Consistency for Multi-View Detection and Tracking
- Title(参考訳): 多視点検出・追跡のための自己視整合性を有するスパースBEV融合
- Authors: Keisuke Toida, Taigo Sakai, Naoki Kato, Kazutoyo Yokota, Takeshi Nakamura, Kazuhiro Hotta,
- Abstract要約: SCFusionは、マルチビュー機能統合を改善するための3つのテクニックを組み合わせたフレームワークである。
SCFusionは最先端のパフォーマンスを達成し、WildTrackで95.9%、MultiviewXで89.2%を記録した。
- 参考スコア(独自算出の注目度): 15.680801582969393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-View Multi-Object Tracking (MVMOT) is essential for applications such as surveillance, autonomous driving, and sports analytics. However, maintaining consistent object identities across multiple cameras remains challenging due to viewpoint changes, lighting variations, and occlusions, which often lead to tracking errors.Recent methods project features from multiple cameras into a unified Bird's-Eye-View (BEV) space to improve robustness against occlusion. However, this projection introduces feature distortion and non-uniform density caused by variations in object scale with distance. These issues degrade the quality of the fused representation and reduce detection and tracking accuracy.To address these problems, we propose SCFusion, a framework that combines three techniques to improve multi-view feature integration. First, it applies a sparse transformation to avoid unnatural interpolation during projection. Next, it performs density-aware weighting to adaptively fuse features based on spatial confidence and camera distance. Finally, it introduces a multi-view consistency loss that encourages each camera to learn discriminative features independently before fusion.Experiments show that SCFusion achieves state-of-the-art performance, reaching an IDF1 score of 95.9% on WildTrack and a MODP of 89.2% on MultiviewX, outperforming the baseline method TrackTacular. These results demonstrate that SCFusion effectively mitigates the limitations of conventional BEV projection and provides a robust and accurate solution for multi-view object detection and tracking.
- Abstract(参考訳): MVMOT(Multi-View Multi-Object Tracking)は、監視、自律運転、スポーツ分析などのアプリケーションに必須である。
しかし、複数のカメラ間の一貫した物体の同一性を維持することは、視線の変化、照明のバリエーション、そしてしばしばエラーの追跡につながるため、依然として困難であり、近年の手法では、複数のカメラから一貫したBird's-Eye-View(BEV)空間を計画し、閉塞に対するロバスト性を改善する。
しかし,このプロジェクションは物体間距離の変動によって生じる特徴歪みと非一様密度を導入している。
これらの課題は、融合表現の品質を低下させ、検出と追跡の精度を低下させ、これらの問題に対処するために、3つの手法を組み合わせてマルチビュー機能統合を改善するフレームワークであるSCFusionを提案する。
まず、投射中の不自然な補間を避けるためにスパース変換を適用する。
次に、空間的信頼度とカメラ距離に基づいて、特徴を適応的に融合させる密度認識重み付けを行う。
実験では、SCFusionが最先端のパフォーマンスを実現し、WildTrackで95.9%、MultiviewXで89.2%、ベースラインメソッドTrackTacularで89.2%に達した。
これらの結果から,SCF は従来の BEV プロジェクションの限界を効果的に緩和し,多視点物体検出・追跡のための堅牢かつ正確なソリューションを提供することが示された。
関連論文リスト
- DINO-CoDT: Multi-class Collaborative Detection and Tracking with Vision Foundation Models [11.34839442803445]
道路利用者を対象とした多クラス協調検出・追跡フレームワークを提案する。
まず,大域的空間注意融合(GSAF)モジュールを用いた検出器を提案する。
次に,視覚基盤モデルを用いた視覚的セマンティクスを活用し,IDSW(ID SWitch)エラーを効果的に低減するトラックレットRe-IDentification(REID)モジュールを提案する。
論文 参考訳(メタデータ) (2025-06-09T02:49:10Z) - A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding [76.44979557843367]
本稿では,事前の深度範囲を排除した新しい多視点ステレオ(MVS)フレームワークを提案する。
長距離コンテキスト情報を集約するMDA(Multi-view Disparity Attention)モジュールを導入する。
ソース画像のエピポーラ線上のサンプリング点に対応する電流画素の品質を明示的に推定する。
論文 参考訳(メタデータ) (2024-11-04T08:50:16Z) - DVPE: Divided View Position Embedding for Multi-View 3D Object Detection [7.791229698270439]
現在の研究は、受容場間のバランスと、多視点の特徴を集約する際の干渉を減らすことの課題に直面している。
本稿では,視覚的クロスアテンション機構を通じて特徴を世界規模でモデル化する分割ビュー手法を提案する。
我々のフレームワークはDVPEと呼ばれ、nuScenesテストセット上で最先端のパフォーマンス(57.2% mAPと64.5% NDS)を達成する。
論文 参考訳(メタデータ) (2024-07-24T02:44:41Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
マルチカメラ3Dオブジェクト検出(MC3D-Det)は,鳥眼ビュー(BEV)の出現によって注目されている。
本研究では,3次元検出と2次元カメラ平面との整合性を両立させ,一貫した高精度な検出を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T15:31:28Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
自律運転システムにおける高精度で信頼性の高い3次元物体検出を実現するためには,LiDARとカメラ情報の融合が不可欠である。
近年のアプローチでは、2次元カメラ画像の3次元空間への昇華点によるカメラ特徴のセマンティックな密度の探索が試みられている。
マルチグラニュラリティLiDARとカメラ機能とのマルチスケールなプログレッシブインタラクションに焦点を当てた,新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T12:29:29Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
本稿では,汎用マルチタスクマルチセンサ融合フレームワークであるBEVFusionを紹介する。
共有鳥眼ビュー表示空間におけるマルチモーダル特徴を統一する。
3Dオブジェクト検出では1.3%高いmAPとNDS、BEVマップのセグメンテーションでは13.6%高いmIoU、コストは1.9倍である。
論文 参考訳(メタデータ) (2022-05-26T17:59:35Z) - Interactive Multi-scale Fusion of 2D and 3D Features for Multi-object
Tracking [23.130490413184596]
我々は、PointNet++を導入し、ポイントクラウドのマルチスケールのディープ表現を取得し、提案したInteractive Feature Fusionに適応させる。
提案手法は,KITTIベンチマークにおいて,マルチスケールな特徴融合を使わずに優れた性能を実現し,他の手法よりも優れる。
論文 参考訳(メタデータ) (2022-03-30T13:00:27Z) - Hybrid Tracker with Pixel and Instance for Video Panoptic Segmentation [50.62685357414904]
ビデオパノプティカル係数(VPS)は、コヒーレントなパノプティカルセグメンテーションを生成し、ビデオフレーム全体の全ピクセルのアイデンティティを追跡することを目的としている。
単一トラッカーの限界を取り除くために,軽量かつ共同的な追跡モデルであるHybridTrackerを提案する。
総合的な実験により、HybridTrackerはCityscapes-VPSとVIPERデータセットの最先端メソッドよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-03-02T16:21:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。