論文の概要: Phishing Webpage Detection: Unveiling the Threat Landscape and Investigating Detection Techniques
- arxiv url: http://arxiv.org/abs/2509.08424v1
- Date: Wed, 10 Sep 2025 09:14:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.372358
- Title: Phishing Webpage Detection: Unveiling the Threat Landscape and Investigating Detection Techniques
- Title(参考訳): フィッシングWebページ検出:脅威景観の解明と探究技術
- Authors: Aditya Kulkarni, Vivek Balachandran, Tamal Das,
- Abstract要約: 研究者はフィッシングWebページ検出アプローチの進歩に積極的に取り組んできた。
既存の検出手法やツールの回避を目的とした攻撃者による絶え間なく進化する戦略は、研究コミュニティに進行中の課題を提示する。
本調査では,URLベース,Webページコンテンツベース,視覚的手法を含む,多様なフィッシングWebページ検出手法の体系的分類について述べる。
- 参考スコア(独自算出の注目度): 0.03499870393443268
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the realm of cybersecurity, phishing stands as a prevalent cyber attack, where attackers employ various tactics to deceive users into gathering their sensitive information, potentially leading to identity theft or financial gain. Researchers have been actively working on advancing phishing webpage detection approaches to detect new phishing URLs, bolstering user protection. Nonetheless, the ever-evolving strategies employed by attackers, aimed at circumventing existing detection approaches and tools, present an ongoing challenge to the research community. This survey presents a systematic categorization of diverse phishing webpage detection approaches, encompassing URL-based, webpage content-based, and visual techniques. Through a comprehensive review of these approaches and an in-depth analysis of existing literature, our study underscores current research gaps in phishing webpage detection. Furthermore, we suggest potential solutions to address some of these gaps, contributing valuable insights to the ongoing efforts to combat phishing attacks.
- Abstract(参考訳): サイバーセキュリティの分野では、フィッシングは一般的なサイバー攻撃であり、攻撃者はユーザーを騙して機密情報を収集し、ID盗難や金銭的利益につながる可能性がある。
研究者は、新しいフィッシングURLを検出し、ユーザー保護を強化するフィッシングWebページ検出アプローチの進歩に積極的に取り組んできた。
それでも、既存の検出方法やツールの回避を目的とした攻撃者による絶え間なく進化する戦略は、研究コミュニティに継続的な課題をもたらしている。
本調査では,URLベース,Webページコンテンツベース,視覚的手法を含む,多様なフィッシングWebページ検出手法の体系的分類について述べる。
本研究は,これらのアプローチの総合的なレビューと既存文献の詳細な分析を通じて,フィッシングWebページの検出における現在の研究ギャップを浮き彫りにしている。
さらに、これらのギャップのいくつかに対処する潜在的な解決策を提案し、フィッシング攻撃に対する継続的な取り組みに貴重な洞察を与えている。
関連論文リスト
- SoK: Advances and Open Problems in Web Tracking [71.54586748169943]
Webトラッキングは、パーソナライズされた広告とコンバージョン追跡を可能にする、広範かつ不透明なプラクティスである。
Webトラッキングは、広告業界の変化、ブラウザによるアンチトラッキング対策の導入、新たなプライバシー規制の実施などによって、かつての世代の変革が進んでいる。
このシステム化・オブ・ナレッジ(SoK)は、この幅広い研究を統合することを目的としており、近代的で急速に進化するWebトラッキングのランドスケープを形成するための技術的なメカニズム、対策、および規制の包括的概要を提供する。
論文 参考訳(メタデータ) (2025-06-16T23:30:54Z) - Web Phishing Net (WPN): A scalable machine learning approach for real-time phishing campaign detection [0.0]
現在、フィッシングはサイバー攻撃の最も一般的なタイプであり、データ漏洩の主な原因と認識されている。
本稿では,高速かつスケーラブルな教師なし学習手法を提案する。
ユーザのプライバシを保護しながら、高い検出率でキャンペーン全体を検出することができる。
論文 参考訳(メタデータ) (2025-02-17T15:06:56Z) - From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks [0.8050163120218178]
フィッシング攻撃は、ユーザーを騙して機密情報を盗み、重大なサイバーセキュリティの脅威を引き起こす。
我々は、さまざまなフィッシング機能を正当なWebページに埋め込むことで、敵対的なフィッシングWebページを生成するツールであるPhishOracleを開発した。
本研究は, フィッシング検出モデルによる敵攻撃に対する脆弱性を強調し, より堅牢な検出アプローチの必要性を強調した。
論文 参考訳(メタデータ) (2024-07-29T18:21:34Z) - Deep Learning-Based Speech and Vision Synthesis to Improve Phishing
Attack Detection through a Multi-layer Adaptive Framework [1.3353802999735709]
現在のアンチフィッシング法は、攻撃者が採用する高度化戦略のために、複雑なフィッシングに対して脆弱なままである。
本研究では,Deep LearningとRandon Forestを組み合わせて,画像の読み上げ,ディープフェイクビデオからの音声合成,自然言語処理を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-27T06:47:52Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - Machine Learning for Detection and Mitigation of Web Vulnerabilities and
Web Attacks [0.0]
クロスサイトスクリプティング(XSS)とクロスサイトリクエストフォージェリ(CSRF)は、Webセキュリティの分野で大きな関心事となっている。
これらのWeb脆弱性を検出するパフォーマンスを改善するために、いくつかのアイデアが提案されている。
機械学習技術は最近、XSSやCSRFに対抗するために研究者によって使用されている。
論文 参考訳(メタデータ) (2023-04-27T18:27:26Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。