論文の概要: OTESGN:Optimal Transport Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2509.08612v1
- Date: Wed, 10 Sep 2025 14:08:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.447653
- Title: OTESGN:Optimal Transport Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
- Title(参考訳): OTESGN:Aspect-based Sentiment Analysisのための統語論的意味グラフネットワークの最適輸送
- Authors: Xinfeng Liao, Xuanqi Chen, Lianxi Wang, Jiahuan Yang, Zhuowei Chen, Ziying Rong,
- Abstract要約: アスペクトベースの感情分析は、アスペクト項を特定し、その感情極性を決定することを目的としている。
本稿では,Syntactic-Semantic Collaborative Attentionを導入したOTESGN(Optimal Transport Enhanced Syntactic-Semantic Graph Network)を提案する。
OTESGNは最先端の結果を達成し、Twitterでは+1.01% F1、Laptop14ベンチマークでは+1.30% F1を上回った。
- 参考スコア(独自算出の注目度): 5.444885665589783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-based sentiment analysis (ABSA) aims to identify aspect terms and determine their sentiment polarity. While dependency trees combined with contextual semantics effectively identify aspect sentiment, existing methods relying on syntax trees and aspect-aware attention struggle to model complex semantic relationships. Their dependence on linear dot-product features fails to capture nonlinear associations, allowing noisy similarity from irrelevant words to obscure key opinion terms. Motivated by Differentiable Optimal Matching, we propose the Optimal Transport Enhanced Syntactic-Semantic Graph Network (OTESGN), which introduces a Syntactic-Semantic Collaborative Attention. It comprises a Syntactic Graph-Aware Attention for mining latent syntactic dependencies and modeling global syntactic topology, as well as a Semantic Optimal Transport Attention designed to uncover fine-grained semantic alignments amidst textual noise, thereby accurately capturing sentiment signals obscured by irrelevant tokens. A Adaptive Attention Fusion module integrates these heterogeneous features, and contrastive regularization further improves robustness. Experiments demonstrate that OTESGN achieves state-of-the-art results, outperforming previous best models by +1.01% F1 on Twitter and +1.30% F1 on Laptop14 benchmarks. Ablative studies and visual analyses corroborate its efficacy in precise localization of opinion words and noise resistance.
- Abstract(参考訳): アスペクトベースの感情分析(ABSA)は、アスペクト項を特定し、感情の極性を決定することを目的としている。
依存性木と文脈意味論が組み合わさってアスペクトの感情を効果的に識別する一方で、既存のメソッドは構文木とアスペクト認識の注意が複雑な意味関係をモデル化するのに苦労している。
線形ドット積の特徴への依存は、非線型関連を捉えることに失敗し、無関係な単語から曖昧な重要な意見の言葉へのノイズの多い類似性を可能にする。
そこで我々は, 最適輸送強化セマンティックグラフネットワーク(OTESGN)を提案する。
これは、潜在構文的依存関係をマイニングし、グローバルな構文的トポロジーをモデル化するための構文グラフ認識と、テキストノイズ中の微細なセマンティックなセマンティックアライメントを明らかにするために設計されたセマンティック・トランスポート・アテンションを含み、無関係なトークンによって隠蔽された感情信号を正確にキャプチャする。
アダプティブ・アテンション・フュージョン(Adaptive Attention Fusion)モジュールはこれらの異種特徴を統合し、対照的な正則化はロバスト性をさらに向上させる。
実験の結果、OTESGNは最先端の結果を達成し、Twitterでは+1.01% F1、Laptop14ベンチマークでは+1.30% F1を上回った。
Ablative study and visual analysis は、意見語の正確な局所化と耐雑音性において、その効果を裏付けるものである。
関連論文リスト
- Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective [50.261681681643076]
本稿では,SemVarEffectとSemVarBenchというベンチマークを用いて,テキスト・画像合成における入力のセマンティックな変化と出力の因果性を評価する。
本研究は,T2I合成コミュニティによるヒューマンインストラクション理解の探索を促進する効果的な評価枠組みを確立する。
論文 参考訳(メタデータ) (2024-10-14T08:45:35Z) - Entity-Aware Self-Attention and Contextualized GCN for Enhanced Relation Extraction in Long Sentences [5.453850739960517]
本稿では,入力文の構文構造とシーケンスの意味的文脈を効率的に組み込んだ,エンティティを意識した自己意図型GCN(ESC-GCN)を提案する。
本モデルでは,既存の依存性ベースモデルやシーケンスベースモデルと比較して,パフォーマンスの向上を実現している。
論文 参考訳(メタデータ) (2024-09-15T10:50:51Z) - Advancing Aspect-Based Sentiment Analysis through Deep Learning Models [4.0064131990718606]
本研究では,セティシィス(SentiSys)と呼ばれる革新的なエッジ強化GCNを導入し,無傷な特徴情報を保存しながら構文グラフをナビゲートする。
実験結果から,SentiSysを用いたアスペクトベース感情分析の性能向上が示された。
論文 参考訳(メタデータ) (2024-04-04T07:31:56Z) - A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning [3.30307212568497]
本稿では,移動学習を用いたアスペクトベース感性分析のためのハイブリッド手法を提案する。
このアプローチは、大きな言語モデル(LLM)と従来の構文的依存関係の両方の長所を利用して、弱い教師付きアノテーションを生成することに焦点を当てている。
論文 参考訳(メタデータ) (2024-03-25T23:02:33Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
レコメンデーションシステムは、クリックやレビューのようなユーザとイテムのインタラクションを利用して表現を学習する。
従来の研究では、様々な側面や意図にまたがるユーザの嗜好をモデル化することで、推奨精度と解釈可能性を改善する。
そこで本研究では,意味的側面と認識的相互作用を明らかにするためのチェーンベースのプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T15:44:09Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot セマンティックセグメンテーション(Few-shot semantic segmentation)は、新しいクラスの各ピクセルを、わずかに注釈付きサポートイメージで検索するタスクである。
本稿では,クラス間の類似性に起因するマッチングノイズを抑制するために,機能拡張コンテキスト認識ネットワーク(FECANet)を提案する。
さらに,前景と背景の余分な対応関係を符号化する新たな相関再構成モジュールを提案する。
論文 参考訳(メタデータ) (2023-01-19T16:31:13Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
クロスドメイン感情分類(CDSC)は、ソースドメインから学んだ伝達可能なセマンティクスを使用して、ラベルなしのターゲットドメインにおけるレビューの感情を予測することを目的としている。
本稿では、単語列と構文グラフの両方からドメイン不変セマンティクスを学習できる適応型構文グラフ埋め込み法であるグラフ適応意味伝達(GAST)モデルを提案する。
論文 参考訳(メタデータ) (2022-05-18T07:47:01Z) - BiSyn-GAT+: Bi-Syntax Aware Graph Attention Network for Aspect-based
Sentiment Analysis [23.223136577272516]
アスペクトベースの感情分析は、アスペクト固有の感情極性推論のためにアスペクトと対応する感情を調整することを目的としている。
近年,グラフニューラルネットワークによる依存性の構文情報の利用が最も人気になっている。
この問題に対処するために,Bi-Syntax 対応グラフ注意ネットワーク (BiSyn-GAT+) を提案する。
論文 参考訳(メタデータ) (2022-04-06T22:18:12Z) - Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional
Networks and Syntax-based Regulation [89.38054401427173]
Aspect-based Sentiment Analysis (ABSA) は、特定の側面に向けて文の感情極性を予測する。
依存関係ツリーは、ABSAの最先端のパフォーマンスを生成するために、ディープラーニングモデルに統合することができる。
本稿では,この2つの課題を克服するために,グラフに基づく新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2020-10-26T07:36:24Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。