論文の概要: TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals
- arxiv url: http://arxiv.org/abs/2509.08699v1
- Date: Wed, 10 Sep 2025 15:43:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.4771
- Title: TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals
- Title(参考訳): TANGO: トポロジカルゴールのためのローカルメトリック制御によるトラバーサビリティ対応ナビゲーション
- Authors: Stefan Podgorski, Sourav Garg, Mehdi Hosseinzadeh, Lachlan Mares, Feras Dayoub, Ian Reid,
- Abstract要約: ゼロショット・ロングホライゾン・ロボットナビゲーションを可能にする新しいRGBのみのオブジェクトレベルのトポロジカルナビゲーションパイプラインを提案する。
提案手法は,グローバルなトポロジカルパス計画と局所的軌跡制御を統合し,障害物を避けつつ,ロボットがオブジェクトレベルのサブゴールに向かって移動できるようにする。
シミュレーション環境と実世界の両方のテストにおいて,本手法の有効性を実証し,その堅牢性とデプロイ性を強調した。
- 参考スコア(独自算出の注目度): 10.69725316052444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.
- Abstract(参考訳): ロボット工学における視覚ナビゲーションは、伝統的にグローバルに一貫性のある3Dマップや学習コントローラに依存している。
本研究では、3Dマップや事前訓練されたコントローラを必要とせずに、ゼロショットで長距離のロボットナビゲーションを可能にする、新しいRGBのみのオブジェクトレベルのトポロジカルナビゲーションパイプラインを提案する。
提案手法は,グローバルなトポロジカルパス計画と局所的軌跡制御を統合し,障害物を避けつつ,ロボットがオブジェクトレベルのサブゴールに向かって移動できるようにする。
本研究では,単眼深度とトラバーサビリティ推定を用いて局所軌道を連続的に予測し,必要に応じてベースラインコントローラにフォールバックする自動切換機構を組み込むことにより,従来の手法の限界に対処する。
このシステムは基礎モデルを使用して動作し、ドメイン固有の微調整を必要とせずに、オープンセットの適用性を保証する。
シミュレーション環境と実世界の両方のテストにおいて,本手法の有効性を実証し,その堅牢性とデプロイ性を強調した。
我々の手法は既存の最先端手法よりも優れており、オープンセット環境におけるビジュアルナビゲーションをより適応的で効果的なソリューションを提供する。
ソースコードは、https://github.com/podgorki/TANGO.comで公開されている。
関連論文リスト
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
本稿では,ニューラルネットワーク検証技術を利用して制御障壁関数(CBF)とポリシー修正機構の設計を行う階層型制御フレームワークを提案する。
提案手法は,安全なCBFベースの制御層を構築するために使用される,安全でない操作領域を特定するための確率的列挙に依存する。
これらの実験は、効率的なナビゲーション動作を維持しながら、安全でない動作を補正する提案手法の能力を実証するものである。
論文 参考訳(メタデータ) (2025-04-30T13:47:25Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Control Transformer: Robot Navigation in Unknown Environments through
PRM-Guided Return-Conditioned Sequence Modeling [0.0]
サンプルベース確率的ロードマッププランナによって導かれる低レベルポリシーから返却条件付きシーケンスをモデル化する制御変換器を提案する。
制御トランスフォーマーは迷路を通り、未知の環境へ移動できることを示す。
論文 参考訳(メタデータ) (2022-11-11T18:44:41Z) - Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe
Quadruped Navigation [1.2783783498844021]
典型的なSOTAシステムは、マッパー、グローバルプランナー、ローカルプランナー、コマンドトラッキングコントローラの4つの主要モジュールで構成されている。
我々は,グローバルプランナから粗い計画経路を追跡するためのベロシティプランを生成するために,ロバストで安全なローカルプランナを構築している。
この枠組みを用いることで、四足歩行ロボットは衝突なしに様々な複雑な環境を自律的に移動でき、ベースライン法と比較してスムーズなコマンドプランを生成することができる。
論文 参考訳(メタデータ) (2022-04-19T04:01:44Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z) - Learning Synthetic to Real Transfer for Localization and Navigational
Tasks [7.019683407682642]
ナビゲーションは、コンピュータビジョン、ロボット工学、制御の概念を組み合わせて、複数の分野のクロスロードにある。
この研究は、実世界への移動をできる限り少ない努力で行うことができるナビゲーションパイプラインをシミュレーションで作成することを目的としていた。
ナビゲーションパイプラインを設計するには、環境、ローカライゼーション、ナビゲーション、計画の4つの大きな課題が発生する。
論文 参考訳(メタデータ) (2020-11-20T08:37:03Z) - BADGR: An Autonomous Self-Supervised Learning-Based Navigation System [158.6392333480079]
BadGRは、エンドツーエンドの学習ベースのモバイルロボットナビゲーションシステムである。
実際の環境で収集された、自己監督型のオフポリシーデータでトレーニングすることができる。
BadGRは、幾何学的に邪魔な障害物を伴って、現実世界の都市やオフロード環境をナビゲートすることができる。
論文 参考訳(メタデータ) (2020-02-13T18:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。