論文の概要: SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
- arxiv url: http://arxiv.org/abs/2509.08828v1
- Date: Wed, 10 Sep 2025 17:59:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.546797
- Title: SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
- Title(参考訳): SAFT:単眼ビデオからの微分物理シミュレーションによるテンプレートからの布の形状と外観
- Authors: David Stotko, Reinhard Klein,
- Abstract要約: 本稿では,3次元幾何再構成の領域と外見推定を組み合わせた物理ベースのレンダリング手法を提案する。
本稿では,単一の単分子RGBビデオシーケンスのみを入力として,ファブリックのための両方のタスクを実行できるシステムを提案する。
現場における最近の手法と比較して、3次元再構成における誤差を2.64倍に減らし、1シーンあたり30分の中程度のランタイムを必要とする。
- 参考スコア(独自算出の注目度): 6.408363851409316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.
- Abstract(参考訳): 三次元動的シーンの再構築は、コンピュータビジョンの領域において、十分に確立されているが難しい課題である。
本稿では,物理ベースレンダリングのための3次元幾何再構成と外観推定の領域を組み合わせた新しいアプローチを提案し,単一の単眼RGBビデオシーケンスのみを入力として,ファブリックの両タスクを実行できるシステムを提案する。
現実的かつ高品質な変形・レンダリングを得るためには、布形状と異なるレンダリングの物理シミュレーションを用いる。
本稿では, モノクロ映像における深度あいまいさ問題に対処することにより, 再現性を向上させる3次元再構成作業のための2つの新しい正規化手法を提案する。
現場における最近の手法と比較して、3次元再構成における誤差を2.64倍に減らし、1シーンあたり30分の中程度のランタイムを必要とする。
さらに、この最適化された動きは、変形物体の外観推定を行うのに十分な品質を達成し、この単一の単眼RGBビデオから鋭い詳細を復元する。
関連論文リスト
- DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)を紹介する。
動的シーンのモノクロポーズビデオから変形可能な3Dガウススプラットを予測する最初のフィードフォワード法である。
最先端のモノクロビデオ3D追跡手法と同等の性能を発揮する。
論文 参考訳(メタデータ) (2025-06-11T17:59:58Z) - Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
本研究では,物体の形状とテクスチャを同時に高忠実度に再現する新しい枠組みを提案する。
提案手法は,SSR(Single-view Neural implicit Shape and Radiance Field)表現を用いて,明示的な3次元形状制御とボリュームレンダリングの両方を活用する。
我々のフレームワークの特徴は、単一のビュー3D再構成モデルにレンダリング機能をシームレスに統合しながら、きめ細かいテクスチャメッシュを生成する能力である。
論文 参考訳(メタデータ) (2023-11-01T11:46:15Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
本稿では,モノクラーRGBビデオ入力のみから動的シーンの3次元形状と物理パラメータを学習する手法を提案する。
実験により,提案手法は,競合するニューラルフィールドアプローチと比較して,動的シーンのメッシュとビデオの再構成に優れることを示した。
論文 参考訳(メタデータ) (2022-10-22T04:57:55Z) - MonoNeuralFusion: Online Monocular Neural 3D Reconstruction with
Geometric Priors [41.228064348608264]
本稿では,モノクロ映像からの高忠実度オンライン3次元シーン再構築のためのボリュームレンダリングを備えたニューラル暗黙シーン表現を提案する。
きめ細かい再現のために、我々の重要な洞察は、幾何的先行をニューラル暗黙のシーン表現とニューラルボリュームレンダリングの両方に組み込むことである。
MonoNeuralFusionは、量的にも質的にも、ずっと優れた完全かつきめ細かい再構築結果を生成する。
論文 参考訳(メタデータ) (2022-09-30T00:44:26Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model [76.64071133839862]
モノクロRGBビデオから一般的なデフォーミングシーンをキャプチャすることは、多くのコンピュータグラフィックスや視覚アプリケーションにとって不可欠である。
提案手法であるUb4Dは、大きな変形を処理し、閉塞領域での形状補完を行い、可変ボリュームレンダリングを用いて、単眼のRGBビデオを直接操作することができる。
我々の新しいデータセットの結果は公開され、表面の復元精度と大きな変形に対する堅牢性の観点から、技術の現状が明らかに改善されていることを実証する。
論文 参考訳(メタデータ) (2022-06-16T17:59:54Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Learning monocular 3D reconstruction of articulated categories from
motion [39.811816510186475]
ビデオの自己スーパービジョンは、動きに基づくサイクルロスによる連続した3次元再構成の一貫性を強要する。
少数の局所的学習可能なハンドルの変位を介して3D表面を制御する3Dテンプレート変形の解釈可能なモデルを紹介します。
多様な形状, 視点, テクスチャを具体化して, 複数の対象カテゴリーのテクスチャを再現する。
論文 参考訳(メタデータ) (2021-03-30T13:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。