論文の概要: MonoNeuralFusion: Online Monocular Neural 3D Reconstruction with
Geometric Priors
- arxiv url: http://arxiv.org/abs/2209.15153v1
- Date: Fri, 30 Sep 2022 00:44:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 15:32:10.251362
- Title: MonoNeuralFusion: Online Monocular Neural 3D Reconstruction with
Geometric Priors
- Title(参考訳): MonoNeuralFusion: 幾何学的事前情報を用いたオンラインモノクラーニューラル3D再構成
- Authors: Zi-Xin Zou, Shi-Sheng Huang, Yan-Pei Cao, Tai-Jiang Mu, Ying Shan,
Hongbo Fu
- Abstract要約: 本稿では,モノクロ映像からの高忠実度オンライン3次元シーン再構築のためのボリュームレンダリングを備えたニューラル暗黙シーン表現を提案する。
きめ細かい再現のために、我々の重要な洞察は、幾何的先行をニューラル暗黙のシーン表現とニューラルボリュームレンダリングの両方に組み込むことである。
MonoNeuralFusionは、量的にも質的にも、ずっと優れた完全かつきめ細かい再構築結果を生成する。
- 参考スコア(独自算出の注目度): 41.228064348608264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity 3D scene reconstruction from monocular videos continues to be
challenging, especially for complete and fine-grained geometry reconstruction.
The previous 3D reconstruction approaches with neural implicit representations
have shown a promising ability for complete scene reconstruction, while their
results are often over-smooth and lack enough geometric details. This paper
introduces a novel neural implicit scene representation with volume rendering
for high-fidelity online 3D scene reconstruction from monocular videos. For
fine-grained reconstruction, our key insight is to incorporate geometric priors
into both the neural implicit scene representation and neural volume rendering,
thus leading to an effective geometry learning mechanism based on volume
rendering optimization. Benefiting from this, we present MonoNeuralFusion to
perform the online neural 3D reconstruction from monocular videos, by which the
3D scene geometry is efficiently generated and optimized during the on-the-fly
3D monocular scanning. The extensive comparisons with state-of-the-art
approaches show that our MonoNeuralFusion consistently generates much better
complete and fine-grained reconstruction results, both quantitatively and
qualitatively.
- Abstract(参考訳): モノクルビデオからの高忠実度3Dシーンの再構成は、特に完全かつきめ細かい幾何学的再構成では、引き続き困難である。
ニューラルネットワークによる以前の3次元再構成アプローチは、完全なシーンの再構成に有望な能力を示してきたが、その結果はしばしば誇張され、幾何学的詳細が不十分である。
本稿では,単眼映像からの高忠実度オンライン3dシーン再構成のためのボリュームレンダリングを用いたニューラル暗黙的シーン表現を提案する。
きめ細かい再構成には,神経暗黙的シーン表現と神経容積レンダリングの両方に幾何学的事前情報を取り込むことで,ボリュームレンダリング最適化に基づく効果的な幾何学習機構を実現することが重要となる。
そこで本研究では,モノクロビデオからオンラインのニューラル3D再構成を行うMonoNeuralFusionを紹介し,オンザフライ3Dモノクロスキャンにおいて3次元シーン形状を効率よく生成し,最適化する。
最先端のアプローチと広範囲に比較した結果,我々の単神経流は,定量的かつ質的にも,より完全かつ細粒度の再構成結果を生み出していることがわかった。
関連論文リスト
- Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - Neuralangelo: High-Fidelity Neural Surface Reconstruction [22.971952498343942]
マルチレゾリューション3Dハッシュグリッドの表現力とニューラルサーフェスレンダリングを組み合わせたニューラルアンジェロを提案する。
深度などの補助的な入力がなくても、ニューラルランジェロは従来の手法をはるかに上回る忠実度を持つ多視点画像から高密度な3次元表面構造を効果的に回収することができる。
論文 参考訳(メタデータ) (2023-06-05T17:59:57Z) - CVRecon: Rethinking 3D Geometric Feature Learning For Neural
Reconstruction [12.53249207602695]
本稿では,エンドツーエンドの3Dニューラル再構成フレームワークCVReconを提案する。
コストボリュームにリッチな幾何学的埋め込みを利用して、3次元の幾何学的特徴学習を容易にする。
論文 参考訳(メタデータ) (2023-04-28T05:30:19Z) - Multi-View Mesh Reconstruction with Neural Deferred Shading [0.8514420632209809]
最先端の手法では、ニューラルサーフェス表現とニューラルシェーディングの両方を用いる。
曲面を三角形メッシュとして表現し、三角形の描画とニューラルシェーディングを中心に、微分可能なレンダリングパイプラインを構築します。
パブリックな3次元再構成データセットを用いてランタイムの評価を行い、最適化において従来のベースラインの復元精度を上回りながら、従来のベースラインの再構築精度に適合できることを示す。
論文 参考訳(メタデータ) (2022-12-08T16:29:46Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
ニューラル・ボリューム・フュージョン (BNV-Fusion) は, ニューラル・暗黙表現とニューラル・レンダリングの最近の進歩を活用して高密度3次元再構成を行う。
新しい深度マップをグローバルな暗黙的表現に漸進的に統合するために、我々は新しい二段階融合戦略を提案する。
提案手法を定量的に定性的に評価し,既存手法よりも有意な改善を示した。
論文 参考訳(メタデータ) (2022-04-03T19:33:09Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。