論文の概要: A Masked Representation Learning to Model Cardiac Functions Using Multiple Physiological Signals
- arxiv url: http://arxiv.org/abs/2509.08830v1
- Date: Tue, 26 Aug 2025 17:59:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-14 20:41:04.943024
- Title: A Masked Representation Learning to Model Cardiac Functions Using Multiple Physiological Signals
- Title(参考訳): 複数の生理的信号を用いた心機能モデルへの仮面表現学習
- Authors: Seong-A Park, Jong-Eui Chae, Sungdong Kim, Hyung-Chul Lee, Hyun-Lim Yang,
- Abstract要約: 臨床現場では, 血液動態のモニタリングが患者の予後管理に不可欠である。
実際の臨床シナリオで必要とされる複雑な信号分析を包含するアプローチの提案はまだない。
SNUPHY-Mは、心電図、PSG、APP信号を含む心臓血管分析にマルチモーダルSSLを適用した最初のモデルである。
- 参考スコア(独自算出の注目度): 8.830531840061004
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In clinical settings, monitoring hemodynamics is crucial for managing patient prognosis, necessitating the integrated analysis of multiple physiological signals. While recent research has analyzed single signals such as electrocardiography (ECG) or photoplethysmography (PPG), there has yet to be a proposal for an approach that encompasses the complex signal analysis required in actual clinical scenarios. In this study, we introduce the SNUPHY-M (Seoul National University hospital PHYsiological signal Masked representation learning) model extracts physiological features reflecting the electrical, pressure, and fluid characteristics of the cardiac cycle in the process of restoring three masked physiological signals based on self-supervised learning (SSL): ECG, PPG, and arterial blood pressure (ABP) signals. By employing multiple physical characteristics, the model can extract more enriched features only using non-invasive signals. We evaluated the model's performance in clinical downstream tasks such as hypotension, stroke volume, systolic blood pressure, diastolic blood pressure, and age prediction. Our results showed that the SNUPHY-M significantly outperformed supervised or SSL models, especially in prediction tasks using non-invasive signals. To the best of our knowledge, SNUPHY-M is the first model to apply multi-modal SSL to cardiovascular analysis involving ECG, PPG, and ABP signals. This approach effectively supports clinical decision-making and enables precise diagnostics, contributing significantly to the early diagnosis and management of hemodynamics without invasiveness.
- Abstract(参考訳): 臨床環境では、血液動態のモニタリングは患者の予後管理に不可欠であり、複数の生理的信号の統合分析を必要とする。
近年,心電図 (ECG) や光胸腺図 (PPG) などの単一信号の解析を行っているが, 実際の臨床シナリオで必要とされる複雑な信号分析を包含するアプローチが提案されていない。
本研究では,SNUPHY-M (Seoul National University Hospital PHYsiological Signal Masked representation learning)モデルを用いて,自己教師付き学習(SSL)に基づく3つの生理的信号(ECG, PPG, 動脈血圧(ABP)信号)の回復過程における心循環の電気的, 圧力, 流体的特性を反映した生理的特徴を抽出する。
複数の物理特性を利用することで、モデルは非侵襲的な信号のみを使用してよりリッチな特徴を抽出することができる。
低血圧, 脳卒中容積, 収縮期血圧, 拡張期血圧, 年齢予測などの臨床的下流業務におけるモデルの性能について検討した。
以上の結果より,SNUPHY-Mは非侵襲的信号を用いた予測タスクにおいて,SSLモデルよりも有意に優れていた。
我々の知る限り、SNUPHY-Mは心電図、PSG、APP信号を含む心血管解析にマルチモーダルSSLを適用した最初のモデルである。
このアプローチは, 臨床的意思決定を効果的に支援し, 正確な診断を可能にし, 侵襲性のない血行動態の早期診断と管理に大きく貢献する。
関連論文リスト
- PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation [18.978031999678507]
様々な生理的信号におけるマルチスケールの時間周波数特徴を捉えることを目的とした,新しいウェーブレットに基づく生理的信号解析手法を提案する。
EMGとECGに特有の2つの大規模事前訓練モデルが導入され、性能が向上し、下流タスクに新たなベースラインが設定された。
統合されたマルチモーダルフレームワークは、事前訓練されたEEGモデルを統合することで構築され、各モーダルはその専用ブランチを通してガイドされ、学習可能な重み付き融合によって融合される。
論文 参考訳(メタデータ) (2025-06-12T05:11:41Z) - Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
既存のディープラーニング診断予測モデルと本質的な解釈性は、過去の診断や病院訪問の度に注意重みを割り当てることが多い。
我々は、パーソナライズされた簡潔で忠実な説明を提供するように設計された、自己説明型ハイパーグラフニューラルネットワークモデルSHyを紹介する。
SHyは高次疾患の相互作用を捉え、パーソナライズされた説明として異なる時間的表現型を抽出する。
論文 参考訳(メタデータ) (2025-02-15T06:33:02Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes [3.2458203725405976]
本研究は, 自動呼吸器疾患分類とバイオメトリックス解析にデジタル聴診器技術を活用した新しいアプローチを提案する。
各種呼吸状態の分類に機械学習モデルを訓練する。
本研究は,2値分類の精度(健康と疾患のバランス精度89%)と多値分類の精度(72%)を実現している。
論文 参考訳(メタデータ) (2023-09-12T23:54:00Z) - Power Spectral Density-Based Resting-State EEG Classification of
First-Episode Psychosis [1.3416169841532526]
脳の異常活動パターンの同定における刺激非依存型脳波の有用性を示す。
複数の周波数帯域を組み込んだ一般化モデルでは、脳波バイオマーカーとFEP(First-Episode Psychosis)を関連付けるのがより効率的である。
本稿では,PSD解析における前処理手法の総合的な考察と,異なるモデルの詳細な比較について述べる。
論文 参考訳(メタデータ) (2022-11-23T00:28:41Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
血圧(BP)は、身体の生命維持機能を示す4つの主要な重要な兆候の1つである。
PPG信号に基づいてBPを推定するために,3層ディープニューラルネットワークを用いた高度なデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2021-07-30T22:45:34Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。