論文の概要: Live(r) Die: Predicting Survival in Colorectal Liver Metastasis
- arxiv url: http://arxiv.org/abs/2509.08935v1
- Date: Wed, 10 Sep 2025 19:02:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 16:52:24.111243
- Title: Live(r) Die: Predicting Survival in Colorectal Liver Metastasis
- Title(参考訳): Live(r)死亡 : 大腸癌肝転移の生存予測
- Authors: Muhammad Alberb, Helen Cheung, Anne Martel,
- Abstract要約: 大腸癌はしばしば肝に転移し、長期生存率を大幅に低下させる。
現在の予後モデルは、しばしば限られた臨床または分子的特徴に基づいており、十分な予測力を持っていない。
コントラスト前・後MRIによる外科的予後予測のための完全自動フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.01268579273097071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Colorectal cancer frequently metastasizes to the liver, significantly reducing long-term survival. While surgical resection is the only potentially curative treatment for colorectal liver metastasis (CRLM), patient outcomes vary widely depending on tumor characteristics along with clinical and genomic factors. Current prognostic models, often based on limited clinical or molecular features, lack sufficient predictive power, especially in multifocal CRLM cases. We present a fully automated framework for surgical outcome prediction from pre- and post-contrast MRI acquired before surgery. Our framework consists of a segmentation pipeline and a radiomics pipeline. The segmentation pipeline learns to segment the liver, tumors, and spleen from partially annotated data by leveraging promptable foundation models to complete missing labels. Also, we propose SAMONAI, a novel zero-shot 3D prompt propagation algorithm that leverages the Segment Anything Model to segment 3D regions of interest from a single point prompt, significantly improving our segmentation pipeline's accuracy and efficiency. The predicted pre- and post-contrast segmentations are then fed into our radiomics pipeline, which extracts features from each tumor and predicts survival using SurvAMINN, a novel autoencoder-based multiple instance neural network for survival analysis. SurvAMINN jointly learns dimensionality reduction and hazard prediction from right-censored survival data, focusing on the most aggressive tumors. Extensive evaluation on an institutional dataset comprising 227 patients demonstrates that our framework surpasses existing clinical and genomic biomarkers, delivering a C-index improvement exceeding 10%. Our results demonstrate the potential of integrating automated segmentation algorithms and radiomics-based survival analysis to deliver accurate, annotation-efficient, and interpretable outcome prediction in CRLM.
- Abstract(参考訳): 大腸癌はしばしば肝に転移し、長期生存を著しく減少させる。
外科的切除は大腸癌肝転移 (CRLM) の唯一の治療であるが, 予後は腫瘍の特徴や臨床的, ゲノム学的因子によって様々である。
現在の予後モデルは、しばしば限られた臨床または分子的特徴に基づいており、特に多焦点CRLM症例では十分な予測能力が欠如している。
術前および術後MRIによる術前の術後成績予測を完全自動化する枠組みを提案する。
私たちのフレームワークはセグメンテーションパイプラインと放射能パイプラインで構成されています。
セグメンテーションパイプラインは、早い基礎モデルを利用して、肝臓、腫瘍、脾臓を部分的に注釈付けされたデータからセグメント化することを学ぶ。
また,Segment Anything Modelを利用した新たなゼロショット3DプロンプトプロンプトアルゴリズムであるSAMONAIを提案する。
予測されたコントラスト前後のセグメンテーションは、各腫瘍の特徴を抽出し、生存分析のための新しいオートエンコーダベースのマルチインスタンスニューラルネットワークであるSurvAMINNを用いて生存を予測する。
SurvAMINNは、最も攻撃的な腫瘍に焦点をあてて、左右に検閲された生存データから次元減少とハザード予測を共同で学習する。
227人の患者からなる機関的データセットの総合的評価は、我々のフレームワークが既存の臨床およびゲノムバイオマーカーを超越し、Cインデックスの改善が10%を超えることを実証している。
本研究は, CRLMにおける精度, アノテーション効率, 解釈可能な結果予測を実現するために, 自動セグメンテーションアルゴリズムと放射能に基づく生存分析を統合する可能性を示した。
関連論文リスト
- Prediction of Distant Metastasis for Head and Neck Cancer Patients Using Multi-Modal Tumor and Peritumoral Feature Fusion Network [6.753955554949766]
頭頸部扁平上皮癌(HN SCC)における転移の意義
本研究では,CT画像,放射線画像,臨床データを統合し,HN SCC患者の転移リスクを予測するためのディープラーニングベースのフレームワークを開発した。
論文 参考訳(メタデータ) (2025-08-28T06:39:38Z) - SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
選択的脊椎手術における滞在時間(LOS)予測のための機械学習モデルの開発と評価を行った。
我々は,従来のMLモデルと,マスク付き双方向長短期記憶(BiLSTM)であるオペレーショナルLSTMを比較した。
決定係数(R2)を用いて性能を評価し,説明可能なAIを用いて鍵予測器を同定した。
論文 参考訳(メタデータ) (2025-07-15T01:18:28Z) - MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
我々は,WSIおよび患者レベルでの生存を予測するための様々な戦略を比較した。
前者はそれぞれのWSIを独立したサンプルとして扱い、他の作業で採用された戦略を模倣します。
後者は、複数のWSIの予測を集約するか、最も関連性の高いスライドを自動的に識別するメソッドを含む。
論文 参考訳(メタデータ) (2025-03-29T11:14:02Z) - Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge [45.3253187215396]
2024年脳腫瘍髄膜腫放射線療法(BraTS-MEN-RT)は、自動セグメンテーションアルゴリズムの進歩を目的とした課題である。
我々はBraTS-MEN-RTチャレンジの設計と結果について述べる。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
本稿では,H&EおよびHPSで染色した組織学的スライドを用いて,自動予後予測のためのエンドツーエンドアプローチを提案する。
まずGAN(Generative Adversarial Network)を用いてスライス正規化を行い、染色のばらつきを低減し、予測パイプラインへの入力として使用される画像の全体的な品質を向上させる。
転移性結節および周囲組織から抽出した特徴を利用して予後モデルを訓練し,同時に知識蒸留フレームワークで視覚変換器(ViT)を訓練し,予後予測の性能を再現し,向上させる。
論文 参考訳(メタデータ) (2023-11-17T03:32:11Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
大腸癌生存予測に病理学とゲノム学的知見を統合したマルチモーダルトランスフォーマー(PathOmics)を提案する。
ギガピクセル全スライド画像における組織ミクロ環境間の内在的相互作用を捉えるための教師なし事前訓練を強調した。
我々は,TCGA大腸癌と直腸癌コホートの両方に対するアプローチを評価し,提案手法は競争力があり,最先端の研究より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-22T00:59:26Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - Automated Segmentation and Recurrence Risk Prediction of Surgically
Resected Lung Tumors with Adaptive Convolutional Neural Networks [3.5413688566798096]
肺がんは、がん関連死亡の重大な原因である。
本稿では,肺腫瘍のセグメンテーションと再発リスク予測における畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々の知る限りでは、これは最初の完全自動化されたセグメンテーションと再発リスク予測システムである。
論文 参考訳(メタデータ) (2022-09-17T23:06:22Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
本研究は腫瘍学的に重要なリンパ節(または不審な癌転移)の検出と分節に焦点を当てた。
我々はOSLNを腫瘍近位・腫瘍遠位分類に分割する分断型決定階層化手法を提案する。
局所的な3D画像パッチから得られた特徴と高次病変特性を組み合わせた新しいグローバルローカルネットワーク(GLNet)を提案する。
論文 参考訳(メタデータ) (2020-05-27T23:12:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。