論文の概要: Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge
- arxiv url: http://arxiv.org/abs/2405.18383v3
- Date: Mon, 21 Jul 2025 22:54:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.734124
- Title: Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge
- Title(参考訳): 2024年BraTS髄膜腫放射線治療計画の検討
- Authors: Dominic LaBella, Valeriia Abramova, Mehdi Astaraki, Andre Ferreira, Zhifan Jiang, Mason C. Cleveland, Ramandeep Kang, Uma M. Lal-Trehan Estrada, Cansu Yalcin, Rachika E. Hamadache, Clara Lisazo, Adrià Casamitjana, Joaquim Salvi, Arnau Oliver, Xavier Lladó, Iuliana Toma-Dasu, Tiago Jesus, Behrus Puladi, Jens Kleesiek, Victor Alves, Jan Egger, Daniel Capellán-Martín, Abhijeet Parida, Austin Tapp, Xinyang Liu, Maria J. Ledesma-Carbayo, Jay B. Patel, Thomas N. McNeal, Maya Viera, Owen McCall, Albert E. Kim, Elizabeth R. Gerstner, Christopher P. Bridge, Katherine Schumacher, Michael Mix, Kevin Leu, Shan McBurney-Lin, Pierre Nedelec, Javier Villanueva-Meyer, David R. Raleigh, Jonathan Shapey, Tom Vercauteren, Kazumi Chia, Marina Ivory, Theodore Barfoot, Omar Al-Salihi, Justin Leu, Lia M. Halasz, Yuri S. Velichko, Chunhao Wang, John P. Kirkpatrick, Scott R. Floyd, Zachary J. Reitman, Trey C. Mullikin, Eugene J. Vaios, Christina Huang, Ulas Bagci, Sean Sachdev, Jona A. Hattangadi-Gluth, Tyler M. Seibert, Nikdokht Farid, Connor Puett, Matthew W. Pease, Kevin Shiue, Syed Muhammad Anwar, Shahriar Faghani, Peter Taylor, Pranav Warman, Jake Albrecht, András Jakab, Mana Moassefi, Verena Chung, Rong Chai, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Nazanin Maleki, Rachit Saluja, Florian Kofler, Christopher G. Schwarz, Philipp Lohmann, Phillipp Vollmuth, Louis Gagnon, Maruf Adewole, Hongwei Bran Li, Anahita Fathi Kazerooni, Nourel Hoda Tahon, Udunna Anazodo, Ahmed W. Moawad, Bjoern Menze, Marius George Linguraru, Mariam Aboian, Benedikt Wiestler, Ujjwal Baid, Gian-Marco Conte, Andreas M. Rauschecker, Ayman Nada, Aly H. Abayazeed, Raymond Huang, Maria Correia de Verdier, Jeffrey D. Rudie, Spyridon Bakas, Evan Calabrese,
- Abstract要約: 2024年脳腫瘍髄膜腫放射線療法(BraTS-MEN-RT)は、自動セグメンテーションアルゴリズムの進歩を目的とした課題である。
我々はBraTS-MEN-RTチャレンジの設計と結果について述べる。
- 参考スコア(独自算出の注目度): 45.3253187215396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aimed to advance automated segmentation algorithms using the largest known multi-institutional dataset of 750 radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or postoperative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case included a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk post-operative site. Target volume annotations adhered to established radiotherapy planning protocols, ensuring consistency across cases and institutions, and were approved by expert neuroradiologists and radiation oncologists. Six participating teams developed, containerized, and evaluated automated segmentation models using this comprehensive dataset. Team rankings were assessed using a modified lesion-wise Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (95HD). The best reported average lesion-wise DSC and 95HD was 0.815 and 26.92 mm, respectively. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes. We describe the design and results from the BraTS-MEN-RT challenge.
- Abstract(参考訳): 2024年、BraTS-MEN-RT(Brain tumor Segmentation Meningioma Radiotherapy)の課題は、従来の放射線治療または定位放射線治療を受けた無傷または術後の髄膜腫患者を対象とした、750個の脳MRIの多施設的データセットを用いて、自動セグメンテーションアルゴリズムを推進することであった。
それぞれの症例は, 造影T1-weighted radiotherapy planning MRIをネイティブな取得領域に配置し, 腫瘍容積 (GTV) を表すシングルラベルの "target volume" と, 術後に発症した部位について検討した。
目標ボリュームアノテーションは、確立された放射線治療計画プロトコルに固執し、ケースや機関間の整合性を確保し、専門の神経放射線学者や放射線腫瘍学者によって承認された。
参加する6つのチームは、この包括的なデータセットを使用して、自動セグメンテーションモデルを開発し、コンテナ化し、評価した。
チームランキングはDice similarity Coefficient(DSC)と95% Hausdorff Distance(95HD)を用いて評価された。
DSC, 95HDはそれぞれ0.815mm, 26.92mmであった。
BraTS-MEN-RTは、正確な腫瘍の分節化を可能とし、適切な治療を容易にし、最終的には患者の成績を改善することで、自動放射線治療計画を大幅に進歩させることが期待されている。
我々はBraTS-MEN-RTチャレンジの設計と結果について述べる。
関連論文リスト
- MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
本稿では,高度な放射線学に焦点を当てた大規模言語モデルMGH Radiology Llamaを提案する。
Llama 3 70Bモデルを使用して開発され、Radiology-GPTやRadiology-Llama2といった従来のドメイン固有モデルをベースにしている。
従来の指標とGPT-4に基づく評価の両方を取り入れた評価では,汎用LLMよりも高い性能を示す。
論文 参考訳(メタデータ) (2024-08-13T01:30:03Z) - The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI [5.725734864357991]
治療後のグリオーマMRIに対する2024 Brain tumor (BraTS)チャレンジは、最先端の自動セグメンテーションモデルのコミュニティ標準とベンチマークを提供する。
競合他社は、4つの異なる腫瘍サブリージョンを予測するために、自動セグメンテーションモデルを開発する。
モデルは別個の検証とテストデータセットで評価される。
論文 参考訳(メタデータ) (2024-05-28T17:07:55Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023:
Intracranial Meningioma [4.435336201147607]
BraTS Meningioma 2023 チャレンジは、最先端の自動頭蓋内髄膜腫セグメンテーションモデルのためのコミュニティ標準とベンチマークを提供する。
競合相手はMRIで3つの異なる髄膜下領域を予測する自動セグメンテーションモデルを開発する。
論文 参考訳(メタデータ) (2023-05-12T17:52:36Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
手術前セグメンテーションのための2つの最先端ニューラルネットワークアーキテクチャをトレーニングした。
最高の成績は61%のDiceスコアで、最高の分類性能は80%のバランスの取れた精度で達成された。
予測セグメンテーションは、患者を残存腫瘍と全切除患者に正確に分類するために用いられる。
論文 参考訳(メタデータ) (2023-04-18T10:14:45Z) - Segmentation of Planning Target Volume in CT Series for Total Marrow
Irradiation Using U-Net [0.0]
U-Netアーキテクチャを用いたTMLI処理のためのプランニングターゲットボリューム(PTV)のセグメンテーションのためのディープラーニングに基づく自動コンストラクション手法を提案する。
本研究は放射線腫瘍学者を相当の時間で救うことができるセグメンテーションモデルの開発に向けた予備的だが重要なステップである。
論文 参考訳(メタデータ) (2023-04-05T10:40:37Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
我々は,多系列ニューロオンコロジーMRIデータの集約と処理のための人工知能ベースのソリューションを提案する。
エンド・ツー・エンドのフレームワーク i) アンサンブル分類器を用いてMRIの配列を分類し, i) 再現可能な方法でデータを前処理し, iv) 腫瘍組織サブタイプを規定する。
欠落したシーケンスに対して堅牢であり、専門的なループアプローチを採用しており、セグメンテーションの結果は放射線学者によって手動で洗練される可能性がある。
論文 参考訳(メタデータ) (2022-10-06T18:23:42Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
本稿では,術前の mpMRI におけるグリオーマの自動認識のための,DeepSeg と nnU-Net という2つのディープラーニングフレームワークのアグリゲーションを提案する。
本手法では, 腫瘍, 腫瘍コア, 全腫瘍領域のDice類似度スコアが92.00, 87.33, 84.10, Hausdorff Distances 3.81, 8.91, 16.02を得た。
論文 参考訳(メタデータ) (2021-12-13T10:51:20Z) - Automatic Brain Tumor Segmentation with Scale Attention Network [1.7767466724342065]
マルチモーダル脳腫瘍チャレンジ2020(BraTS 2020)は、マルチパラメトリック磁気共鳴イメージング(mpMRI)で異なる自動アルゴリズムを比較する共通のプラットフォームを提供する
本稿では,異なるスケールで特徴写像から高レベルな意味論を取り入れた,低レベルな細部を取り入れた動的スケールアテンション機構を提案する。
術式はBraTS 2020で提供した369症例を用いて訓練し, 平均Dice similarity Coefficient (DSC) は0.8828, 0.8433, 0.8177, Hausdorff は95%, 5.2176, 17.9697, 13.4298 であった。
論文 参考訳(メタデータ) (2020-11-06T04:45:49Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
19,993症例から36,316巻の胸部CTデータセットを収集,解析した。
自由テキストラジオグラフィーレポートから異常ラベルを自動的に抽出するルールベース手法を開発した。
胸部CTボリュームの多臓器・多臓器分類モデルも開発した。
論文 参考訳(メタデータ) (2020-02-12T00:59:23Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。