論文の概要: AI-Powered Assistant for Long-Term Access to RHIC Knowledge
- arxiv url: http://arxiv.org/abs/2509.09688v1
- Date: Mon, 18 Aug 2025 15:16:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-21 06:05:45.717001
- Title: AI-Powered Assistant for Long-Term Access to RHIC Knowledge
- Title(参考訳): RHIC知識への長期アクセスのためのAIを活用したアシスタント
- Authors: Mohammad Atif, Vincent Garonne, Eric Lancon, Jerome Lauret, Alexandr Prozorov, Michal Vranovsky,
- Abstract要約: RHIC Data and Analysis Preservation Plan (DAPP)は、ドキュメントへの自然言語アクセスを提供するAIベースのアシスタントシステムである。
持続可能な、説明可能な長期AIアクセスのために設計された、デプロイメント、計算性能、進行中のマルチエクスペリエンス統合、アーキテクチャ機能について報告する。
私たちの経験は、現代のAI/MLツールが科学的レガシデータのユーザビリティと発見可能性を変える方法を示しています。
- 参考スコア(独自算出の注目度): 35.18016233072556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory concludes 25 years of operation, preserving not only its vast data holdings ($\sim$1 ExaByte) but also the embedded scientific knowledge becomes a critical priority. The RHIC Data and Analysis Preservation Plan (DAPP) introduces an AI-powered assistant system that provides natural language access to documentation, workflows, and software, with the aim of supporting reproducibility, education, and future discovery. Built upon Large Language Models using Retrieval-Augmented Generation and the Model Context Protocol, this assistant indexes structured and unstructured content from RHIC experiments and enables domain-adapted interaction. We report on the deployment, computational performance, ongoing multi-experiment integration, and architectural features designed for a sustainable and explainable long-term AI access. Our experience illustrates how modern AI/ML tools can transform the usability and discoverability of scientific legacy data.
- Abstract(参考訳): ブルックヘイブン国立研究所の相対論的重イオン衝突型加速器(RHIC)は25年間の運用を終了し、その膨大なデータ保有(\sim$1 ExaByte)だけでなく、組み込まれた科学的知識も重要な優先事項となっている。
RHIC Data and Analysis Preservation Plan (DAPP)は、再現性、教育、将来の発見をサポートすることを目的として、ドキュメント、ワークフロー、ソフトウェアへの自然言語アクセスを提供するAIベースのアシスタントシステムを導入する。
Retrieval-Augmented GenerationとModel Context Protocolを使った大規模言語モデルに基づいて構築されたこのアシスタントは、RHIC実験から構造化された、構造化されていないコンテンツをインデックス化し、ドメイン適応インタラクションを可能にする。
持続可能な、説明可能な長期AIアクセスのために設計された、デプロイメント、計算性能、進行中のマルチエクスペリエンス統合、アーキテクチャ機能について報告する。
私たちの経験は、現代のAI/MLツールが科学的レガシデータのユーザビリティと発見可能性を変える方法を示しています。
関連論文リスト
- Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented Generation (RAG) は人工知能(AI)において重要な技術である。
具体化されたAIのためのRAGの最近の進歩は、特に計画、タスク実行、マルチモーダル知覚、インタラクション、特殊ドメインの応用に焦点を当てている。
論文 参考訳(メタデータ) (2025-03-23T10:33:28Z) - CurateGPT: A flexible language-model assisted biocuration tool [0.6425885600880427]
ジェネレーティブAIは、人間主導のキュレーションを支援する新しい可能性を開いた。
CurateGPTはキュレーションプロセスの合理化を図り、共同作業と効率性の向上を図っている。
これにより、キュレーター、研究者、エンジニアがキュレーションの取り組みを拡大し、科学データ量の増加に追随するのに役立つ。
論文 参考訳(メタデータ) (2024-10-29T20:00:04Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - CI-Bench: Benchmarking Contextual Integrity of AI Assistants on Synthetic Data [7.357348564300953]
CI-Benchは、モデル推論中に個人情報を保護するAIアシスタントの能力を評価するための包括的なベンチマークである。
対話やメールを含む自然なコミュニケーションを生成するための,新しい,スケーラブルなマルチステップデータパイプラインを提案する。
我々は、AIアシスタントを定式化し、評価し、パーソナルアシスタントタスクに向けたさらなる研究と注意深いトレーニングの必要性を実証する。
論文 参考訳(メタデータ) (2024-09-20T21:14:36Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
我々は,大規模言語モデル(LLM)を利用した化学AIエージェントを開発し,自然言語テキストから構造化データセットを作成する。
化学者のAIエージェントであるEunomiaは、何十年もの科学研究論文から既存の知識を活用して、行動を計画し実行することができる。
論文 参考訳(メタデータ) (2023-12-18T20:29:58Z) - Towards A Unified Agent with Foundation Models [18.558328028366816]
強化学習(RL)エージェントにそのような能力を組み込んで活用する方法を検討する。
我々は、言語を中核的推論ツールとして使用するフレームワークを設計し、エージェントが一連の基本的なRL課題にどのように取り組むことができるかを探る。
探索効率とオフラインデータセットからのデータの再利用能力において,ベースラインよりも大幅にパフォーマンスが向上したことを示す。
論文 参考訳(メタデータ) (2023-07-18T22:37:30Z) - GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training
Data Exploration [97.68234051078997]
我々はPyseriniを、オープンソースのAIライブラリとアーティファクトのHugging Faceエコシステムに統合する方法について論じる。
Jupyter NotebookベースのウォークスルーがGitHubで公開されている。
GAIA Search - 前述した原則に従って構築された検索エンジンで、人気の高い4つの大規模テキストコレクションへのアクセスを提供する。
論文 参考訳(メタデータ) (2023-06-02T12:09:59Z) - FAIR principles for AI models, with a practical application for
accelerated high energy diffraction microscopy [1.9270896986812693]
我々は、統合された計算フレームワーク内でFAIRデータとAIモデルを作成し、共有する方法を紹介します。
ドメインに依存しないこの計算フレームワークが、自律的なAI駆動の発見を可能にする方法について説明する。
論文 参考訳(メタデータ) (2022-07-01T18:11:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。