論文の概要: Robustness and Diagnostic Performance of Super-Resolution Fetal Brain MRI
- arxiv url: http://arxiv.org/abs/2509.10257v1
- Date: Fri, 12 Sep 2025 13:59:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-15 16:03:08.111885
- Title: Robustness and Diagnostic Performance of Super-Resolution Fetal Brain MRI
- Title(参考訳): 超解像胎児脳MRIのロバスト性と診断性能
- Authors: Ema Masterl, Tina Vipotnik Vesnaver, Žiga Špiclin,
- Abstract要約: 超分解能再構成(SRR)法はスライス・ツー・ボリューム登録と超分解能技術を組み合わせて高分解能(HR)3Dボリュームを生成する。
本研究では、NftyMIC、SVRTK、NeSVoRの3つの最先端SRR法を、140個の胎児脳MRIスキャンに応用した。
NeSVoRはHC群とPC群で最大かつ最も一貫した再建成功率(>90%)を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fetal brain MRI relies on rapid multi-view 2D slice acquisitions to reduce motion artifacts caused by fetal movement. However, these stacks are typically low resolution, may suffer from motion corruption, and do not adequately capture 3D anatomy. Super-resolution reconstruction (SRR) methods aim to address these limitations by combining slice-to-volume registration and super-resolution techniques to generate high-resolution (HR) 3D volumes. While several SRR methods have been proposed, their comparative performance - particularly in pathological cases - and their influence on downstream volumetric analysis and diagnostic tasks remain underexplored. In this study, we applied three state-of-the-art SRR method - NiftyMIC, SVRTK, and NeSVoR - to 140 fetal brain MRI scans, including both healthy controls (HC) and pathological cases (PC) with ventriculomegaly (VM). Each HR reconstruction was segmented using the BoUNTi algorithm to extract volumes of nine principal brain structures. We evaluated visual quality, SRR success rates, volumetric measurement agreement, and diagnostic classification performance. NeSVoR demonstrated the highest and most consistent reconstruction success rate (>90%) across both HC and PC groups. Although significant differences in volumetric estimates were observed between SRR methods, classification performance for VM was not affected by the choice of SRR method. These findings highlight NeSVoR's robustness and the resilience of diagnostic performance despite SRR-induced volumetric variability.
- Abstract(参考訳): 胎児脳MRIは、胎児の動きによって引き起こされる運動アーティファクトを減らすために、高速なマルチビュー2Dスライス取得に依存している。
しかし、これらのスタックは通常低分解能であり、運動の腐敗に悩まされ、3D解剖学を適切に捉えない。
超分解能再構成(SRR)法は,スライス・ツー・ボリューム登録と超分解能技術を組み合わせて高分解能(HR)3Dボリュームを生成することにより,これらの制約に対処することを目的としている。
いくつかのSRR法が提案されているが、その比較性能(特に病理症例では)と下流の体積分析と診断タスクへの影響は未解明のままである。
本研究では,NftyMIC,SVRTK,NeSVoRの3種類のSRR法を健常者 (HC) と病的症例 (PC) の両方を含む140個の胎児脳MRIスキャンに適用した。
各HR再構成は、BoUNTiアルゴリズムを用いて9つの主要な脳構造を抽出した。
視覚的品質, SRR成功率, 容積測定契約, 診断分類性能について検討した。
NeSVoRはHC群とPC群で最大かつ最も一貫した再建成功率(>90%)を示した。
SRR法ではボリューム推定に有意な差が認められたが,VMの分類性能はSRR法の選択の影響を受けなかった。
これらの結果から,SRRによる容積変動にもかかわらず,NeSVoRの堅牢性と診断性能の回復性が示唆された。
関連論文リスト
- SUFFICIENT: A scan-specific unsupervised deep learning framework for high-resolution 3D isotropic fetal brain MRI reconstruction [7.268308489093152]
等方性HR容積再構成のための教師なし反復SVR-SRRフレームワークを提案する。
高分解能(HR)ボリュームを生成するために、ディープイメージ事前フレームワーク内に埋め込まれたデコードネットワークを包括的画像劣化モデルに組み込む。
大規模動乱シミュレーションデータと臨床データを用いて行った実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2025-05-23T04:53:59Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Resolution- and Stimulus-agnostic Super-Resolution of Ultra-High-Field Functional MRI: Application to Visual Studies [1.8327547104097965]
高分解能fMRIは脳のメソスケール組織への窓を提供する。
しかし、高い空間分解能はスキャン時間を増加させ、低信号とコントラスト-ノイズ比を補う。
本研究では,fMRIのための深層学習に基づく3次元超解像法を提案する。
論文 参考訳(メタデータ) (2023-11-25T03:33:36Z) - InverseSR: 3D Brain MRI Super-Resolution Using a Latent Diffusion Model [1.4126798060929953]
研究グレードの医療センターから得られた高分解能(HR)MRIスキャンは、画像化された組織に関する正確な情報を提供する。
通常の臨床MRIスキャンは通常、低分解能(LR)である
MRI超解像(SR)のためのエンドツーエンドのディープラーニング手法が提案されているが、入力分布の変化があるたびに再学習する必要がある。
本稿では,英国バイオバンクでトレーニングされた最新の3D脳生成モデル,潜在拡散モデル(LDM)を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-23T23:04:42Z) - AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion
correction of multi-slice fetal brain MRI [8.087220876070477]
Affinity Fusion-based Framework for Iteratively Random Motion correct of the multi-slice fetal brain MRI。
複数のスライスからシーケンシャルな動きを学習し、親和性融合を用いて2次元スライスと再構成された3次元ボリュームの特徴を統合する。
この方法は、脳の向きに関係なく正確に動きを推定し、シミュレートされた動き破壊データに対して、他の最先端の学習法より優れる。
論文 参考訳(メタデータ) (2022-05-12T02:54:55Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
我々は,MRIボリュームと空間消去を組み合わせた空間文脈の増大が,教師なしの異常セグメンテーション性能の向上に繋がるかどうかを検討する。
本稿では,2次元変分オートエンコーダ(VAE)と3次元の相違点を比較し,3次元入力消去を提案し,データセットサイズが性能に与える影響を体系的に検討する。
入力消去による最高の3D VAEは、平均DICEスコアが31.40%となり、2D VAEは25.76%となった。
論文 参考訳(メタデータ) (2021-09-14T09:17:27Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
我々は,MRIボリュームの履歴を用いて,この問題をフル4次元ディープラーニングに拡張することで,性能が向上するかどうか検討する。
提案手法は, 病変側真陽性率0.84, 病変側偽陽性率0.19で従来手法より優れていた。
論文 参考訳(メタデータ) (2020-04-20T11:41:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。