論文の概要: AttnBoost: Retail Supply Chain Sales Insights via Gradient Boosting Perspective
- arxiv url: http://arxiv.org/abs/2509.10506v1
- Date: Mon, 01 Sep 2025 22:23:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-21 06:05:45.762192
- Title: AttnBoost: Retail Supply Chain Sales Insights via Gradient Boosting Perspective
- Title(参考訳): AttnBoost: グラディエント・ブースティング・パースペクティブによるサプライチェーンの売上見通し
- Authors: Muxin Ge, Hanyu Ma, Yiyang Wu, Xiaoli Ma, Yadi Liu, Ye Aung Moe, Weizheng Xie,
- Abstract要約: AttnBoostは、予測精度と説明可能性の両方を高めるために、機能レベルの注意をブースティングプロセスに統合する。
我々はAttnBoostを大規模小売販売データセットで評価した。
- 参考スコア(独自算出の注目度): 6.21979432029352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting product demand in retail supply chains presents a complex challenge due to noisy, heterogeneous features and rapidly shifting consumer behavior. While traditional gradient boosting decision trees (GBDT) offer strong predictive performance on structured data, they often lack adaptive mechanisms to identify and emphasize the most relevant features under changing conditions. In this work, we propose AttnBoost, an interpretable learning framework that integrates feature-level attention into the boosting process to enhance both predictive accuracy and explainability. Specifically, the model dynamically adjusts feature importance during each boosting round via a lightweight attention mechanism, allowing it to focus on high-impact variables such as promotions, pricing, and seasonal trends. We evaluate AttnBoost on a large-scale retail sales dataset and demonstrate that it outperforms standard machine learning and deep tabular models, while also providing actionable insights for supply chain managers. An ablation study confirms the utility of the attention module in mitigating overfitting and improving interpretability. Our results suggest that attention-guided boosting represents a promising direction for interpretable and scalable AI in real-world forecasting applications.
- Abstract(参考訳): 小売サプライチェーンにおける需要予測は、ノイズ、異質な特徴、消費者行動の急激な変化による複雑な課題を呈する。
従来の勾配向上決定木(GBDT)は、構造化データに対して強い予測性能を提供するが、条件の変化の下で最も関連性の高い特徴を特定し、強調する適応的なメカニズムを欠いていることが多い。
本研究では,予測精度と説明可能性の両方を高めるために,特徴レベルの注意を促進プロセスに統合する解釈可能な学習フレームワークであるAttnBoostを提案する。
特に、このモデルは、軽量の注意機構を通じて各ブースティングラウンドにおける特徴の重要度を動的に調整し、プロモーション、価格設定、季節トレンドなどの高影響変数に焦点を合わせることができる。
我々はAttnBoostを大規模小売販売データセットで評価し、標準的な機械学習モデルと深い表形式モデルを上回る性能を示しながら、サプライチェーンマネージャに実用的な洞察を提供する。
Ablation study is confirmed the utility of the attention module in mitigating overfitting and improve interpretability。
この結果から,実世界の予測アプリケーションにおいて,注意誘導型ブースティングがAIの解釈と拡張性に有望な方向を示すことが示唆された。
関連論文リスト
- Forgetting: A New Mechanism Towards Better Large Language Model Fine-tuning [51.92313556418432]
Supervised Fine-tuning (SFT) は、事前訓練された大規模言語モデル (LLM) において重要な役割を果たす。
各コーパス内のトークンを、モデルパフォーマンスを改善するのに有用かどうかに基づいて、正と負の2つの部分に分類することを提案する。
我々は、よく確立されたベンチマークで実験を行い、この忘れるメカニズムが全体のモデル性能を向上するだけでなく、より多様なモデル応答を促進することを発見した。
論文 参考訳(メタデータ) (2025-08-06T11:22:23Z) - TAT: Temporal-Aligned Transformer for Multi-Horizon Peak Demand Forecasting [51.37167759339485]
本稿では,アプリロリで知られたコンテキスト変数を利用して予測性能を向上させるマルチホライゾン予測器であるTemporal-Aligned Transformer (TAT)を提案する。
我々のモデルはエンコーダとデコーダで構成されており、どちらもピーク需要予測のためのコンテキスト依存アライメントを学習するための新しい時間アライメントアテンション(TAA)を組み込んでいる。
以上の結果から,TATはピーク需要予測において30%の精度を実現し,他の最先端手法と比較して総合的な性能を維持した。
論文 参考訳(メタデータ) (2025-07-14T14:51:24Z) - Adaptive Spatial Augmentation for Semi-supervised Semantic Segmentation [51.645152962504056]
半教師付きセマンティックセグメンテーションでは、データ拡張は弱い一貫性の規則化フレームワークにおいて重要な役割を果たす。
空間増強はSSSSのモデルトレーニングに寄与するが,弱い面と強い面の間には一貫性のないマスクが生じる。
本稿では,各インスタンスのエントロピーに基づいて動的に拡張を調整する適応的拡張戦略を提案する。
論文 参考訳(メタデータ) (2025-05-29T13:35:48Z) - Semi-supervised Semantic Segmentation with Multi-Constraint Consistency Learning [81.02648336552421]
本稿では,エンコーダとデコーダの段階的拡張を容易にするためのマルチ制約一貫性学習手法を提案する。
自己適応型特徴マスキングとノイズ注入は、デコーダの堅牢な学習のための特徴を摂動させるために、インスタンス固有の方法で設計されている。
Pascal VOC2012およびCityscapesデータセットの実験結果から,提案したMCCLが新たな最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2025-03-23T03:21:33Z) - Explainability of Highly Associated Fuzzy Churn Patterns in Binary Classification [21.38368444137596]
本研究では,多変量パターンの同定と,直観的解釈のためのソフト境界の設定の重要性を強調した。
主な目的は、機械学習モデルと、トップテキストのHUIMを用いたファジィセット理論を使用して、顧客の混乱の高度に関連付けられたパターンを特定することである。
その結果、顧客チャーン予測モデルの説明可能性と有効性を改善する革新的なアプローチが導入された。
論文 参考訳(メタデータ) (2024-10-21T09:44:37Z) - Boosting Model Resilience via Implicit Adversarial Data Augmentation [20.768174896574916]
本稿では, 対向性および対向性摂動分布を組み込むことにより, 試料の深い特性を増大させることを提案する。
そして、この拡張過程が代理損失関数の最適化に近似することを理論的に明らかにする。
我々は4つの共通のバイアス付き学習シナリオにまたがって広範な実験を行う。
論文 参考訳(メタデータ) (2024-04-25T03:22:48Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
人間は、新しいタスクを学ぶ際に、過去の経験を明確に表現する能力を持っている。
本稿では,歴史情報を活用するためのアドオンモジュールとして,自己参照(SR)アプローチを提案する。
提案手法は,非教師付き強化学習ベンチマークにおけるIQM(Interquartile Mean)性能と最適ギャップ削減の両面から,最先端の成果を実現する。
論文 参考訳(メタデータ) (2023-11-16T09:07:34Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。