論文の概要: A Differential Manifold Perspective and Universality Analysis of Continuous Attractors in Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2509.10514v1
- Date: Wed, 03 Sep 2025 09:16:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-21 06:05:45.772114
- Title: A Differential Manifold Perspective and Universality Analysis of Continuous Attractors in Artificial Neural Networks
- Title(参考訳): ニューラルネットワークにおける連続トラクタの差分マニフォールド視点と普遍性解析
- Authors: Shaoxin Tian, Hongkai Liu, Yuying Yang, Jiali Yu, Zizheng Miao, Xuming Huang, Zhishuai Liu, Zhang Yi,
- Abstract要約: 連続アトラクタは、生体と人工のニューラルシステムの両方で情報処理に重要である。
本研究では,ニューラルネットワークにおける連続的アトラクタの探索のための新しい枠組みを確立する。
- 参考スコア(独自算出の注目度): 9.36187870834781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous attractors are critical for information processing in both biological and artificial neural systems, with implications for spatial navigation, memory, and deep learning optimization. However, existing research lacks a unified framework to analyze their properties across diverse dynamical systems, limiting cross-architectural generalizability. This study establishes a novel framework from the perspective of differential manifolds to investigate continuous attractors in artificial neural networks. It verifies compatibility with prior conclusions, elucidates links between continuous attractor phenomena and eigenvalues of the local Jacobian matrix, and demonstrates the universality of singular value stratification in common classification models and datasets. These findings suggest continuous attractors may be ubiquitous in general neural networks, highlighting the need for a general theory, with the proposed framework offering a promising foundation given the close mathematical connection between eigenvalues and singular values.
- Abstract(参考訳): 連続アトラクタは、空間ナビゲーション、メモリ、深層学習の最適化など、生物学的および人工神経系の情報処理に不可欠である。
しかし、既存の研究では、様々な力学系にまたがる特性を解析する統一的な枠組みが欠如しており、アーキテクチャ間の一般化性が制限されている。
本研究では, 微分多様体の観点から, 人工ニューラルネットワークにおける連続的アトラクタの探索のための新しい枠組みを確立する。
先行結論との整合性を検証し、連続的誘引現象と局所ヤコビ行列の固有値の関係を解明し、共通分類モデルやデータセットにおける特異値成層化の普遍性を示す。
これらの結果から,一般のニューラルネットワークでは連続的アトラクタがユビキタスである可能性が示唆され,固有値と特異値との密接な数学的関係を前提とした,有望な基盤を提供するフレームワークが提案されている。
関連論文リスト
- Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
バイオメディカルデータセットの理解を容易にするために,マルチモーダルデータに対するフレキシブルな識別条件と原理的手法を開発した。
主要な理論的貢献は、モジュラリティ間の因果関係の構造的空間性である。
実世界のヒト表現型データセットの結果は、確立された生物医学研究と一致している。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesicは、ベイズ原理とディープニューラルネットワークを統合し、基盤となる分布をモデル化する新しいフレームワークである。
我々は,いくつかのモビリティデータセットに対するアプローチを評価し,最先端の異常検出手法の大幅な改善を実証した。
論文 参考訳(メタデータ) (2024-10-01T19:02:06Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
本稿では,入力空間における遅延方向を文脈情報に関連付ける理論フレームワークを提案する。
我々は、多様体幾何学と文脈相関に依存する文脈依存多様体容量の正確な公式を導出する。
我々のフレームワークの表現性の向上は、階層階層の初期段階のディープネットワークにおける表現再構成を捉えるが、以前は分析にはアクセスできない。
論文 参考訳(メタデータ) (2024-05-10T23:37:31Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
表現上の相似性を定量化する計量空間の族を提供する。
我々は、正準相関解析に基づいて既存の表現類似度尺度を修正し、三角形の不等式を満たす。
解剖学的特徴とモデル性能の観点から解釈可能な神経表現の関係を同定する。
論文 参考訳(メタデータ) (2021-10-27T19:48:55Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
ニューラルネットワークでは、あらゆる相互作用する特徴は共通の隠蔽ユニットとの強い重み付けの接続に従う必要がある。
本稿では, 永続的ホモロジーの理論に基づいて, 相互作用強度を定量化するための新しい尺度を提案する。
PID(Persistence Interaction Detection)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-25T02:15:24Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - On Connections between Regularizations for Improving DNN Robustness [67.28077776415724]
本稿では,ディープニューラルネットワーク(DNN)の対角的ロバスト性を改善するために最近提案された正規化条件を解析する。
入力勾配正則化,ジャコビアン正則化,曲率正則化,クロスリプシッツ関数など,いくつかの有効な方法間の接続性について検討する。
論文 参考訳(メタデータ) (2020-07-04T23:43:32Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
数値実験において,本フレームワークの有効性を実証し,ベンチマークや実世界の応用において,そのメリットを実証する。
論文 参考訳(メタデータ) (2020-02-13T21:01:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。