論文の概要: Resource-Aware Neural Network Pruning Using Graph-based Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2509.10526v1
- Date: Thu, 04 Sep 2025 15:05:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-21 06:05:45.785479
- Title: Resource-Aware Neural Network Pruning Using Graph-based Reinforcement Learning
- Title(参考訳): グラフベース強化学習を用いた資源認識型ニューラルネットワークプルーニング
- Authors: Dieter Balemans, Thomas Huybrechts, Jan Steckel, Siegfried Mercelis,
- Abstract要約: 本稿では,グラフベースの観測空間をAutoMLフレームワークに統合することで,ニューラルネットワークのプルーニングに新たなアプローチを提案する。
本フレームワークは,対象ニューラルネットワークのグラフ表現を導入することにより,刈り込み処理を変換する。
作用空間に対しては、連続プルーニング比から細粒な二分作用空間へ遷移する。
- 参考スコア(独自算出の注目度): 0.8890833546984916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to neural network pruning by integrating a graph-based observation space into an AutoML framework to address the limitations of existing methods. Traditional pruning approaches often depend on hand-crafted heuristics and local optimization perspectives, which can lead to suboptimal performance and inefficient pruning strategies. Our framework transforms the pruning process by introducing a graph representation of the target neural network that captures complete topological relationships between layers and channels, replacing the limited layer-wise observation space with a global view of network structure. The core innovations include a Graph Attention Network (GAT) encoder that processes the network's graph representation and generates a rich embedding. Additionally, for the action space we transition from continuous pruning ratios to fine-grained binary action spaces which enables the agent to learn optimal channel importance criteria directly from data, moving away from predefined scoring functions. These contributions are modelled within a Constrained Markov Decision Process (CMDP) framework, allowing the agent to make informed pruning decisions while adhering to resource constraints such as target compression rates. For this, we design a self-competition reward system that encourages the agent to outperform its previous best performance while satisfying the defined constraints. We demonstrate the effectiveness of our approach through extensive experiments on benchmark datasets including CIFAR-10, CIFAR-100, and ImageNet. The experiments show that our method consistently outperforms traditional pruning techniques, showing state-of-the-art results while learning task-specific pruning strategies that identify functionally redundant connections beyond simple weight magnitude considerations.
- Abstract(参考訳): 本稿では,既存の手法の限界に対処するため,グラフベースの観測空間をAutoMLフレームワークに統合することで,ニューラルネットワークのプルーニングに新たなアプローチを提案する。
従来のプルーニングアプローチは、しばしば手作りのヒューリスティックスや局所最適化の観点に依存しており、最適以下の性能と非効率なプルーニング戦略につながる可能性がある。
我々のフレームワークは、層とチャネルの完全なトポロジ的関係を捉えたターゲットニューラルネットワークのグラフ表現を導入し、限られた層回りの観測空間をネットワーク構造のグローバルなビューに置き換えることで、プルーニングのプロセスを変換する。
中心となるイノベーションは、ネットワークのグラフ表現を処理し、リッチな埋め込みを生成するグラフ注意ネットワーク(GAT)エンコーダである。
さらに、アクション空間では、連続プルーニング比から細粒度のバイナリアクション空間に遷移し、エージェントがデータから直接最適なチャネル重要度を学習し、事前に定義されたスコアリング関数から離れることを可能にする。
これらのコントリビューションは、制約付きマルコフ決定プロセス(CMDP)フレームワークでモデル化され、ターゲット圧縮率などのリソース制約に固執しながら、エージェントが情報的なプルーニング決定を行うことができる。
そこで我々は,規定された制約を満たすことなく,エージェントが過去の最高の性能を上回ることを奨励する自己競争報酬システムの設計を行う。
CIFAR-10, CIFAR-100, ImageNet などのベンチマークデータセットに対する広範な実験により, 本手法の有効性を実証する。
実験の結果,本手法は従来のプルーニング手法より常に優れており,従来のプルーニング手法よりも優れており,単純な重み付け以上の機能的冗長な接続を識別するタスク固有のプルーニング戦略を学習している。
関連論文リスト
- Power Grid Control with Graph-Based Distributed Reinforcement Learning [60.49805771047161]
この作業は、リアルタイムでスケーラブルなグリッド管理のためのグラフベースの分散強化学習フレームワークを前進させる。
グラフニューラルネットワーク(GNN)を使用して、ネットワークのトポロジ情報を単一の低レベルエージェントの観測内にエンコードする。
Grid2Opシミュレーション環境での実験は、このアプローチの有効性を示している。
論文 参考訳(メタデータ) (2025-09-02T22:17:25Z) - Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
リカレントニューラルネットワーク(RNN)はシーケンスモデリングタスクの中心であるが、その高い計算複雑性はスケーラビリティとリアルタイムデプロイメントの課題を引き起こす。
本稿では,RNNを部分的に順序付けられた集合(命題)としてモデル化し,対応する依存格子を構成する新しいフレームワークを提案する。
既約ニューロンを同定することにより、格子ベースのプルーニングアルゴリズムは、冗長なニューロンを除去しながら、重要な接続を選択的に保持する。
論文 参考訳(メタデータ) (2025-02-23T10:11:38Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
車両のルーティング問題を解決するためにEdges Fusionフレームワークを用いた適応型グラフ注意サンプリングを提案する。
提案手法は,既存の手法を2.08%-6.23%上回り,より強力な一般化能力を示す。
論文 参考訳(メタデータ) (2024-05-21T03:33:07Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
本稿では,階層型グラフ再帰ネットワーク(HGRN)と呼ばれる新しいネットワーク構造を提案する。
以上の技術に基づいて,Soft-HGRNと呼ばれる値に基づくMADRLアルゴリズムと,SAC-HRGNというアクタクリティカルな変種を提案する。
論文 参考訳(メタデータ) (2021-09-05T09:51:25Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。