論文の概要: DemandLens: Enhancing Forecast Accuracy Through Product-Specific Hyperparameter Optimization
- arxiv url: http://arxiv.org/abs/2509.11085v1
- Date: Sun, 14 Sep 2025 04:25:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:22.908069
- Title: DemandLens: Enhancing Forecast Accuracy Through Product-Specific Hyperparameter Optimization
- Title(参考訳): DemandLens: プロダクト特有のハイパーパラメータ最適化による予測精度の向上
- Authors: Srijesh Pillai, M. I. Jawid Nazir,
- Abstract要約: このモデルは、サードパーティの契約製造に大きく依存する業界における正確な販売予測に対する重要なニーズに対処する。
当社のアプローチは、サードパーティの契約製造に大きく依存する業界における正確な販売予測の必要性に対処するものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DemandLens demonstrates an innovative Prophet based forecasting model for the mattress-in-a-box industry, incorporating COVID-19 metrics and SKU-specific hyperparameter optimization. This industry has seen significant growth of E-commerce players in the recent years, wherein the business model majorly relies on outsourcing Mattress manufacturing and related logistics and supply chain operations, focusing on marketing the product and driving conversions through Direct-to-Consumer sales channels. Now, within the United States, there are a limited number of Mattress contract manufacturers available, and hence, it is important that they manage their raw materials, supply chain, and, inventory intelligently, to be able to cater maximum Mattress brands. Our approach addresses the critical need for accurate Sales Forecasting in an industry that is heavily dependent on third-party Contract Manufacturing. This, in turn, helps the contract manufacturers to be prepared, hence, avoiding bottleneck scenarios, and aiding them to source raw materials at optimal rates. The model demonstrates strong predictive capabilities through SKU-specific Hyperparameter optimization, offering the Contract Manufacturers and Mattress brands a reliable tool to streamline supply chain operations.
- Abstract(参考訳): DemandLensは、新型コロナウイルス(COVID-19)メトリクスとSKU固有のハイパーパラメータ最適化を取り入れた、マットレス・イン・ア・ボックス産業のための革新的な予言ベースの予測モデルを実証している。
この業界は近年、電子商取引業者の著しい成長を見せており、そのビジネスモデルはマットレスの製造と関連する物流とサプライチェーンの業務のアウトソーシングに大きく依存しており、商品のマーケティングと消費者直接販売チャネルによる転換の推進に重点を置いている。
現在、アメリカ合衆国内では、マットレスの契約業者が限られているため、彼らの原料、サプライチェーン、在庫をインテリジェントに管理し、マットレスブランドを最大限に活用できることが重要である。
当社のアプローチは、サードパーティの契約製造に大きく依存する業界における正確な販売予測の必要性に対処するものである。
そのため、ボトルネックシナリオを回避し、最適なレートで原材料を生産するのを助ける。
このモデルは、SKU固有のハイパーパラメータ最適化を通じて強力な予測能力を示し、Contract ManufacturersとMattressブランドにサプライチェーン操作を合理化するための信頼性の高いツールを提供する。
関連論文リスト
- TAT: Temporal-Aligned Transformer for Multi-Horizon Peak Demand Forecasting [51.37167759339485]
本稿では,アプリロリで知られたコンテキスト変数を利用して予測性能を向上させるマルチホライゾン予測器であるTemporal-Aligned Transformer (TAT)を提案する。
我々のモデルはエンコーダとデコーダで構成されており、どちらもピーク需要予測のためのコンテキスト依存アライメントを学習するための新しい時間アライメントアテンション(TAA)を組み込んでいる。
以上の結果から,TATはピーク需要予測において30%の精度を実現し,他の最先端手法と比較して総合的な性能を維持した。
論文 参考訳(メタデータ) (2025-07-14T14:51:24Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
大きな言語モデル(LLM)は、安全のための有害な要求を拒否することと、ユーティリティのための正当な要求を収容することのバランスをとる必要がある。
本稿では,DPO(Direct Preference Optimization)に基づくアライメントフレームワークを提案する。
我々は,DeepSeek-R1をベンチマークでテストした結果を解析し,この高い評価を得たモデルがもたらす批判的倫理的懸念を明らかにする。
論文 参考訳(メタデータ) (2025-01-20T06:35:01Z) - LLMForecaster: Improving Seasonal Event Forecasts with Unstructured Textual Data [63.777637042161544]
本稿では,非構造化意味情報と文脈情報と履歴データを組み込むために,大規模言語モデルを微調整した新しい予測ポストプロセッサを提案する。
産業規模の小売アプリケーションでは, ホリデードリブン需要の急激な上昇にともなう数種類の製品に対して, 本手法が統計的に有意な改善を予測できることが実証された。
論文 参考訳(メタデータ) (2024-12-03T16:18:42Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
我々は、フェデレーション学習(FL)によるプライバシーを確保しつつ、サービスのデータ提供を容易にする没入型モデルトレーディングフレームワークを提案する。
我々は,資源制約下での高価値モデルに貢献するために,メタバースユーザ(MU)にインセンティブを与えるインセンティブ機構を設計する。
我々は、MUやその他のMSPに関するプライベート情報にアクセスすることなく、深層強化学習に基づく完全に分散された動的報酬アルゴリズムを開発する。
論文 参考訳(メタデータ) (2024-10-25T16:20:46Z) - Large Language Models for Supply Chain Optimization [4.554094815136834]
大規模言語モデル(LLM)がサプライチェーンの自動化と人間の理解と信頼のギャップを埋めるのにどのように役立つかを検討する。
我々はOptiGuideを設計する。これは平易なテキストで入力クエリとして受け付け、基礎となる結果に関する洞察を出力するフレームワークです。
当社のフレームワークがMicrosoftのクラウドサプライチェーン内の実際のサーバ配置シナリオに与える影響を実演する。
論文 参考訳(メタデータ) (2023-07-08T01:42:22Z) - Improving Sales Forecasting Accuracy: A Tensor Factorization Approach
with Demand Awareness [1.8282018606246824]
販売予測への高度時間潜在因子アプローチ(ATLAS)という新しいアプローチを提案する。
ATLASは、複数のストアや製品にまたがる単一のテンソルファクターモデルを構築することで、販売の正確かつ個別化された予測を実現する。
ATLASの利点は、Information Resource, Inc.が収集した8つの製品カテゴリデータセットで実証されている。
論文 参考訳(メタデータ) (2020-11-06T16:04:40Z) - Offer Personalization using Temporal Convolution Network and
Optimization [0.0]
オンラインショッピングやハイマーケット競争の増加は、オンライン小売業者のプロモーション支出の増加につながっている。
本稿では,小売店舗における消費者・商品・時間の交点におけるオファー最適化の課題を解決するためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-14T10:59:34Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。