論文の概要: Quantum Architecture Search for Solving Quantum Machine Learning Tasks
- arxiv url: http://arxiv.org/abs/2509.11198v1
- Date: Sun, 14 Sep 2025 09:55:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:22.972232
- Title: Quantum Architecture Search for Solving Quantum Machine Learning Tasks
- Title(参考訳): 量子機械学習タスクを解くための量子アーキテクチャ探索
- Authors: Michael Kölle, Simon Salfer, Tobias Rohe, Philipp Altmann, Claudia Linnhoff-Popien,
- Abstract要約: RL-QASは、分類タスクに有効な回路アーキテクチャを見つけるためにRLを適用するフレームワークである。
IrisおよびバイナリMNISTデータセットを用いてRL-QASを評価する。
- 参考スコア(独自算出の注目度): 3.515829683606796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing leverages quantum mechanics to address computational problems in ways that differ fundamentally from classical approaches. While current quantum hardware remains error-prone and limited in scale, Variational Quantum Circuits offer a noise-resilient framework suitable for today's devices. The performance of these circuits strongly depends on the underlying architecture of their parameterized quantum components. Identifying efficient, hardware-compatible quantum circuit architectures -- known as Quantum Architecture Search (QAS) -- is therefore essential. Manual QAS is complex and error-prone, motivating efforts to automate it. Among various automated strategies, Reinforcement Learning (RL) remains underexplored, particularly in Quantum Machine Learning contexts. This work introduces RL-QAS, a framework that applies RL to discover effective circuit architectures for classification tasks. We evaluate RL-QAS using the Iris and binary MNIST datasets. The agent autonomously discovers low-complexity circuit designs that achieve high test accuracy. Our results show that RL is a viable approach for automated architecture search in quantum machine learning. However, applying RL-QAS to more complex tasks will require further refinement of the search strategy and performance evaluation mechanisms.
- Abstract(参考訳): 量子コンピューティングは量子力学を活用し、古典的アプローチと根本的に異なる方法で計算問題に対処する。
現在の量子ハードウェアはエラーが発生しやすく、スケールが制限されているが、変分量子回路は、今日のデバイスに適した耐雑音性フレームワークを提供する。
これらの回路の性能は、パラメータ化量子部品の基本構造に強く依存する。
そのため、QAS(Quantum Architecture Search)として知られる、効率的なハードウェア互換の量子回路アーキテクチャの同定が不可欠である。
手動のQASは複雑でエラーを起こしやすいため、自動化へのモチベーションも高い。
さまざまな自動化戦略の中で、強化学習(Reinforcement Learning, RL)は、特に量子機械学習の文脈において、まだ探索されていない。
RL-QASは、分類タスクに有効な回路アーキテクチャを見つけるためにRLを適用するフレームワークである。
IrisおよびバイナリMNISTデータセットを用いてRL-QASを評価する。
エージェントは、テスト精度の高い低複雑さ回路設計を自律的に発見する。
この結果から,RLは量子機械学習におけるアーキテクチャの自動探索に有効な手法であることが示唆された。
しかし、より複雑なタスクにRL-QASを適用するには、探索戦略と性能評価機構のさらなる改善が必要である。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
変分量子アルゴリズム(VQA)は、強力なノイズ中間スケール量子(NISQ)コンピュータを利用するための有望なアプローチである。
本稿では,量子混合状態の進化をモデルとしたQASアルゴリズムである$rho$DARTSを提案する。
論文 参考訳(メタデータ) (2025-06-04T08:30:35Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
トレーニング可能な回路パラメータと構造重み付けを可能にするために、微分可能な量子アーキテクチャ探索(DiffQAS)を提案する。
提案したDiffQAS-QRL手法は,手作業による回路アーキテクチャに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-07-25T17:11:00Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
教師なし表現学習は量子アーキテクチャ探索(QAS)を前進させる新しい機会を提供する
QASは変分量子アルゴリズム(VQA)のための量子回路を最適化するように設計されている
論文 参考訳(メタデータ) (2024-01-21T19:53:17Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
本稿では,量子回路アーキテクチャを構築するための機械学習手法を提案する。
本稿では、この回路設計課題に取り組むために、ディープラーニング(PPR-DQL)フレームワークを用いた確率的ポリシー再利用を提案する。
論文 参考訳(メタデータ) (2021-12-10T19:07:56Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。