論文の概要: Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
- arxiv url: http://arxiv.org/abs/2509.11323v1
- Date: Sun, 14 Sep 2025 15:57:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.028888
- Title: Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
- Title(参考訳): 意味非依存符号化を用いたKalmanNetを用いた多対象追跡の動作推定
- Authors: Jian Song, Wei Mei, Yunfeng Xu, Qiang Fu, Renke Kou, Lina Bu, Yucheng Long,
- Abstract要約: 運動推定は多目的追跡(MOT)において重要な要素である
本研究では,MOTの動作推定に学習支援フィルタを用いる。
セマンティック独立カルマンネット(SIKNet)という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 14.822887770402707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion estimation is a crucial component in multi-object tracking (MOT). It predicts the trajectory of objects by analyzing the changes in their positions in consecutive frames of images, reducing tracking failures and identity switches. The Kalman filter (KF) based on the linear constant-velocity model is one of the most commonly used methods in MOT. However, it may yield unsatisfactory results when KF's parameters are mismatched and objects move in non-stationary. In this work, we utilize the learning-aided filter to handle the motion estimation of MOT. In particular, we propose a novel method named Semantic-Independent KalmanNet (SIKNet), which encodes the state vector (the input feature) using a Semantic-Independent Encoder (SIE) by two steps. First, the SIE uses a 1D convolution with a kernel size of 1, which convolves along the dimension of homogeneous-semantic elements across different state vectors to encode independent semantic information. Then it employs a fully-connected layer and a nonlinear activation layer to encode nonlinear and cross-dependency information between heterogeneous-semantic elements. To independently evaluate the performance of the motion estimation module in MOT, we constructed a large-scale semi-simulated dataset from several open-source MOT datasets. Experimental results demonstrate that the proposed SIKNet outperforms the traditional KF and achieves superior robustness and accuracy than existing learning-aided filters. The code is available at (https://github.com/SongJgit/filternet and https://github.com/SongJgit/TBDTracker).
- Abstract(参考訳): 運動推定は多目的追跡(MOT)において重要な要素である。
画像の連続するフレームにおける位置の変化を分析してオブジェクトの軌跡を予測する。
線形定数速度モデルに基づくカルマンフィルタ(KF)はMOTにおいて最もよく用いられる手法の1つである。
しかし、KF のパラメータが不一致であり、オブジェクトが非定常で動くとき、不満足な結果をもたらす可能性がある。
本研究では,MOTの動作推定に学習支援フィルタを用いる。
具体的には,SIE(Semantic-Independent Encoder)を用いて状態ベクトル(入力特徴)を2ステップで符号化する,Semantic-Independent KalmanNet (SIKNet) という新しい手法を提案する。
まず、SIEは1のカーネルサイズを持つ1次元の畳み込みを使い、異なる状態ベクトル間で均質な意味要素の次元に沿って折り畳み、独立した意味情報をエンコードする。
そして、完全連結層と非線形活性化層を用いて、不均一・セマンティック要素間の非線形および相互依存情報を符号化する。
動き推定モジュールの性能をMOTで独立に評価するために,オープンソースのMOTデータセットから大規模半シミュレーションデータセットを構築した。
実験の結果,提案したSIKNetは従来のKFよりも優れており,既存の学習支援フィルタよりも堅牢性と精度が高いことがわかった。
コードはhttps://github.com/SongJgit/filternetとhttps://github.com/SongJgit/TBDTrackerで入手できる。
関連論文リスト
- DIMM: Decoupled Multi-hierarchy Kalman Filter for 3D Object Tracking [50.038098341549095]
状態推定は、高い操作性を持つ3次元物体追跡において困難である。
本稿では,各方向の異なる動きモデルから推定される推定を効果的に組み合わせる新しいフレームワークであるDIMMを提案する。
DIMMは既存の状態推定手法のトラッキング精度を31.61%99.23%向上させる。
論文 参考訳(メタデータ) (2025-05-18T10:12:41Z) - Ego-Motion Aware Target Prediction Module for Robust Multi-Object Tracking [2.7898966850590625]
我々は、Ego-motion Aware Target Prediction (EMAP)と呼ばれる新しいKFベースの予測モジュールを導入する。
提案手法は、カルマンフィルタを再構成することにより、物体軌道からのカメラ回転速度と翻訳速度の影響を分離する。
EMAPはOC-SORTとDeep OC-SORTのIDSWをそれぞれ73%と21%減少させる。
論文 参考訳(メタデータ) (2024-04-03T23:24:25Z) - OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds [6.661881950861012]
本稿では,従来のシームズネットワークで発生した相関操作を回避するために,インスタンスレベルのエンコーディングの強みを活かした新しい一ストリームネットワークを提案する。
提案手法は,クラス固有のトラッキングだけでなく,より少ない計算と高い効率でクラスに依存しないトラッキングを実現する。
論文 参考訳(メタデータ) (2022-10-16T12:31:59Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - Object Tracking by Detection with Visual and Motion Cues [1.7818230914983044]
自動運転車は、カメラ画像中の物体を検出し、追跡する必要がある。
本稿では,カルマンフィルタを用いた定速度運動モデルに基づく簡易オンライン追跡アルゴリズムを提案する。
課題のあるBDD100データセットに対するアプローチを評価します。
論文 参考訳(メタデータ) (2021-01-19T10:29:16Z) - Learning to Generate Content-Aware Dynamic Detectors [62.74209921174237]
サンプル適応型モデルアーキテクチャを自動的に生成する効率的な検出器の設計を新たに導入する。
動的ルーティングの学習を導くために、オブジェクト検出に適したコースツーファインの成層図を紹介します。
MS-COCOデータセットの実験により、CADDetはバニラルーティングに比べて10%少ないFLOPで1.8以上のmAPを達成することが示された。
論文 参考訳(メタデータ) (2020-12-08T08:05:20Z) - Online Multi-Object Tracking and Segmentation with GMPHD Filter and
Mask-based Affinity Fusion [79.87371506464454]
本稿では,インスタンス分割結果を入力として利用するMOTS法を提案する。
提案手法は,ガウス混合確率仮説密度 (GMPHD) フィルタ,階層型データアソシエーション (HDA) モデル,マスクベース親和性融合 (MAF) モデルに基づく。
2つの人気のあるMOTSデータセットの実験では、主要なモジュールがいくつかの改善点を示している。
論文 参考訳(メタデータ) (2020-08-31T21:06:22Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
本稿では,複数の物体の運動パラメータを推定し,共同検出と関連付けを行うディープ・モーション・モデリング・ネットワーク(DMM-Net)を提案する。
DMM-Netは、人気の高いUA-DETRACチャレンジで12.80 @120+ fpsのPR-MOTAスコアを達成した。
また,車両追跡のための大規模な公開データセットOmni-MOTを合成し,精密な接地トルースアノテーションを提供する。
論文 参考訳(メタデータ) (2020-08-20T08:05:33Z) - Probabilistic 3D Multi-Object Tracking for Autonomous Driving [23.036619327925088]
本手法は,NuScenes Tracking Challengeにおいて初となるオンライン追跡手法を提案する。
提案手法は,カルマンフィルタを用いて対象状態を推定する。
NuScenes 検証とテストセットの実験結果から,本手法は AB3DMOT ベースライン法より優れていることが示された。
論文 参考訳(メタデータ) (2020-01-16T06:38:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。