論文の概要: OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds
- arxiv url: http://arxiv.org/abs/2210.08518v2
- Date: Fri, 7 Jun 2024 04:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 23:14:33.769835
- Title: OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds
- Title(参考訳): OST:ポイントクラウドにおける3次元単一物体追跡のための効率的なワンストリームネットワーク
- Authors: Xiantong Zhao, Yinan Han, Shengjing Tian, Jian Liu, Xiuping Liu,
- Abstract要約: 本稿では,従来のシームズネットワークで発生した相関操作を回避するために,インスタンスレベルのエンコーディングの強みを活かした新しい一ストリームネットワークを提案する。
提案手法は,クラス固有のトラッキングだけでなく,より少ない計算と高い効率でクラスに依存しないトラッキングを実現する。
- 参考スコア(独自算出の注目度): 6.661881950861012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although recent Siamese network-based trackers have achieved impressive perceptual accuracy for single object tracking in LiDAR point clouds, they usually utilized heavy correlation operations to capture category-level characteristics only, and overlook the inherent merit of arbitrariness in contrast to multiple object tracking. In this work, we propose a radically novel one-stream network with the strength of the instance-level encoding, which avoids the correlation operations occurring in previous Siamese network, thus considerably reducing the computational effort. In particular, the proposed method mainly consists of a Template-aware Transformer Module (TTM) and a Multi-scale Feature Aggregation (MFA) module capable of fusing spatial and semantic information. The TTM stitches the specified template and the search region together and leverages an attention mechanism to establish the information flow, breaking the previous pattern of independent \textit{extraction-and-correlation}. As a result, this module makes it possible to directly generate template-aware features that are suitable for the arbitrary and continuously changing nature of the target, enabling the model to deal with unseen categories. In addition, the MFA is proposed to make spatial and semantic information complementary to each other, which is characterized by reverse directional feature propagation that aggregates information from shallow to deep layers. Extensive experiments on KITTI and nuScenes demonstrate that our method has achieved considerable performance not only for class-specific tracking but also for class-agnostic tracking with less computation and higher efficiency.
- Abstract(参考訳): 最近のシームズネットワークベースのトラッカーは、LiDAR点群における単一物体追跡において、目覚しい精度を達成しているが、彼らは通常、重相関演算を用いてカテゴリレベルの特性のみをキャプチャし、複数の物体追跡とは対照的に、任意性の本質的な利点を見落としている。
本研究では,従来のシームズネットワークで発生した相関操作を回避し,計算労力を大幅に削減する,インスタンスレベルのエンコーディングの強みを持つ一ストリームネットワークを急進的に提案する。
特に,提案手法は主にテンプレート対応トランスフォーマーモジュール (TTM) と,空間情報と意味情報を融合可能なマルチスケール特徴集約モジュール (MFA) から構成される。
TTMは、指定されたテンプレートと検索領域を縫合し、アテンション機構を利用して情報フローを確立し、独立な \textit{extraction-and-correlation} の以前のパターンを破る。
結果として、このモジュールは、ターゲットの任意かつ継続的に変化する性質に適したテンプレート認識機能を直接生成することができ、モデルは目に見えないカテゴリに対処できる。
さらに,MFAは,浅層から深層までの情報を集約する逆方向の特徴伝搬を特徴とする空間的・意味的情報を相互に補完する手法を提案する。
KITTI と nuScenes の大規模な実験により,本手法はクラス固有のトラッキングだけでなく,計算量が少なく,高い効率でクラスに依存しないトラッキングにも有効であることが示された。
関連論文リスト
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
歴史的埋め込み機能を用いて,ReIDの表現と検出機能を逐次的にモデル化する。
我々のフレームワークはMOTAとIDF1メトリクスで新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2024-09-17T14:34:18Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Multi-Correlation Siamese Transformer Network with Dense Connection for
3D Single Object Tracking [14.47355191520578]
ポイントクラウドベースの3Dオブジェクトトラッキングは、自動運転において重要なタスクである。
スパースLIDARポイントクラウドデータでテンプレートと検索ブランチの相関を効果的に学習することは依然として困難である。
本稿では,複数のステージを持つマルチ相関シームス変圧器ネットワークを提案し,各ステージの最後に特徴相関を行う。
論文 参考訳(メタデータ) (2023-12-18T09:33:49Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
ライダーセグメンテーションと追跡のための検出中心ネットワークを提案する。
私たちのネットワークのコアコンポーネントの1つは、オブジェクトインスタンス検出ブランチです。
提案手法を複数の3D/4D LPSベンチマークで評価し,我々のモデルがオープンソースモデル間で新たな最先端性を確立することを確認した。
論文 参考訳(メタデータ) (2023-10-19T04:44:43Z) - Staged Depthwise Correlation and Feature Fusion for Siamese Object
Tracking [0.6827423171182154]
視覚的トラッキングのための特徴抽出をさらに最適化するために,DCFFNet という新たな段階的深度相関と特徴融合ネットワークを提案する。
シアムネットワークアーキテクチャに基づいてディープトラッカーを構築しており、複数の大規模データセットでゼロからトレーニングされたオフラインです。
OTB100,VOT2018,LaSOTなど,一般的なベンチマークにトラッカーを実装した。
論文 参考訳(メタデータ) (2023-10-15T06:04:42Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - IoU-Enhanced Attention for End-to-End Task Specific Object Detection [17.617133414432836]
R-CNNは画像に密着したアンカーボックスやグリッドポイントを使わずに有望な結果が得られる。
クエリとアテンション領域の間のスパースの性質と1対1の関係のため、自己注意に大きく依存する。
本稿では,自己注意における値ルーティングの先行として,異なるボックス間でIoUを使用することを提案する。
論文 参考訳(メタデータ) (2022-09-21T14:36:18Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
Ret3Dと呼ばれるシンプルで効率的で効果的な2段階検出器を導入する。
Ret3Dの中核は、新しいフレーム内およびフレーム間関係モジュールの利用である。
無視できる余分なオーバーヘッドにより、Ret3Dは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-18T03:48:58Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
オブジェクトの動きと親和性モデルを単一のネットワークに統一する新しいMOTフレームワークUMAを提案する。
UMAは、単一物体追跡とメートル法学習をマルチタスク学習により統合された三重項ネットワークに統合する。
我々は,タスク認識機能学習を促進するために,タスク固有のアテンションモジュールを装備する。
論文 参考訳(メタデータ) (2020-03-25T09:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。