論文の概要: Query-Focused Extractive Summarization for Sentiment Explanation
- arxiv url: http://arxiv.org/abs/2509.11989v1
- Date: Mon, 15 Sep 2025 14:41:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.347163
- Title: Query-Focused Extractive Summarization for Sentiment Explanation
- Title(参考訳): 感性説明のための問合せ型抽出要約
- Authors: Ahmed Moubtahij, Sylvie Ratté, Yazid Attabi, Maxime Dumas,
- Abstract要約: 本稿では,このギャップをドメインに依存しない汎用レベルで橋渡しするためのマルチバイアスフレームワークを提案する。
次に、感情に基づくバイアスとクエリ拡張による感情説明の問題に対する専門的なアプローチを定式化する。
実世界独自の感情認識型QFSデータセットのベースラインモデルよりも優れた実験結果が得られる。
- 参考スコア(独自算出の注目度): 1.9132624817489867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructive analysis of feedback from clients often requires determining the cause of their sentiment from a substantial amount of text documents. To assist and improve the productivity of such endeavors, we leverage the task of Query-Focused Summarization (QFS). Models of this task are often impeded by the linguistic dissonance between the query and the source documents. We propose and substantiate a multi-bias framework to help bridge this gap at a domain-agnostic, generic level; we then formulate specialized approaches for the problem of sentiment explanation through sentiment-based biases and query expansion. We achieve experimental results outperforming baseline models on a real-world proprietary sentiment-aware QFS dataset.
- Abstract(参考訳): クライアントからのフィードバックを構成分析するには、大量のテキスト文書から感情の原因を決定する必要があることが多い。
そこで我々は,QFS(Query-Focused Summarization)の課題を活用する。
このタスクのモデルは、クエリとソースドキュメント間の言語的不協和によってしばしば妨げられる。
本稿では,このギャップをドメインに依存しない汎用レベルで橋渡しするためのマルチバイアスフレームワークを提案し,その上で,感情に基づくバイアスとクエリ拡張による感情説明の問題に対する特別なアプローチを定式化する。
実世界独自の感情認識型QFSデータセットのベースラインモデルよりも優れた実験結果が得られる。
関連論文リスト
- Reasoning-enhanced Query Understanding through Decomposition and Interpretation [130.19204432111277]
ReDIは、分解と解釈によるクエリ理解のための推論強化アプローチである。
我々は,大規模検索エンジンから実世界の複雑なクエリの大規模データセットをコンパイルした。
BRIGHT と BEIR の実験により、ReDI はスパースと密度の高い検索パラダイムの両方において、強いベースラインを一貫して超えることを示した。
論文 参考訳(メタデータ) (2025-09-08T10:58:42Z) - Structured Attention Matters to Multimodal LLMs in Document Understanding [52.37530640460363]
入力形式が文書理解性能に与える影響について検討する。
生のOCRテキストはMLLMの性能を向上するのではなく、しばしば機能不全であることがわかった。
本稿では,LaTexパラダイムを用いて文書要素を符号化する構造保存手法を提案する。
論文 参考訳(メタデータ) (2025-06-19T07:16:18Z) - Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
本稿では,知識集約型タスク設定として,クエリ中心の要約を再構成する知識集約型アプローチを提案する。
検索モジュールは、大規模知識コーパスから潜在的に関連のある文書を効率的に検索する。
要約コントローラは、強力な大言語モデル(LLM)ベースの要約器を注意深く調整されたプロンプトとシームレスに統合する。
論文 参考訳(メタデータ) (2024-08-19T18:54:20Z) - IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization [59.06663981902496]
クエリ中心の要約(QFS)は、特定の関心事に答え、より優れたユーザ制御とパーソナライゼーションを可能にする要約を作成することを目的としている。
本稿では,LLMを用いたQFSモデル,Longthy Document Summarization,およびクエリ-LLMアライメントの2つの重要な特徴について検討する。
これらのイノベーションは、QFS技術分野における幅広い応用とアクセシビリティの道を開いた。
論文 参考訳(メタデータ) (2024-07-15T07:14:56Z) - WebCiteS: Attributed Query-Focused Summarization on Chinese Web Search Results with Citations [34.99831757956635]
我々は,属性付きクエリ中心要約 (AQFS) のタスクを定式化するとともに,7kの人称注釈の要約を引用した中国語データセットであるWebCiteSを提示する。
これらの課題に対処するために、詳細なメトリクスを開発し、自動評価器が文を細かな検証のためにサブステートに分解できるようにする。
論文 参考訳(メタデータ) (2024-03-04T07:06:41Z) - QontSum: On Contrasting Salient Content for Query-focused Summarization [22.738731393540633]
クエリ中心の要約(QFS)は、特定のクエリに対処する要約を生成する自然言語処理において難しいタスクである。
本稿では,GARにおけるQFSの役割について述べる。
コントラスト学習を利用したQFSの新しい手法であるQontSumを提案する。
論文 参考訳(メタデータ) (2023-07-14T19:25:35Z) - Competency Problems: On Finding and Removing Artifacts in Language Data [50.09608320112584]
複雑な言語理解タスクでは、すべての単純な特徴相関が突発的であると論じる。
人間バイアスを考慮したコンピテンシー問題に対するデータ作成の難しさを理論的に分析します。
論文 参考訳(メタデータ) (2021-04-17T21:34:10Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
既存の作業は、クエリとテキストセグメント間の関連性を推定する検索スタイルの手法に大きく依存している。
本稿では,クエリに関連するセグメントを推定するための個別モジュールを導入した粗大なモデリングフレームワークを提案する。
我々のフレームワークは、標準QFSベンチマークにおいて、強力な比較システムよりも優れていることを実証する。
論文 参考訳(メタデータ) (2020-04-06T22:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。