論文の概要: Can LLMs Address Mental Health Questions? A Comparison with Human Therapists
- arxiv url: http://arxiv.org/abs/2509.12102v1
- Date: Mon, 15 Sep 2025 16:26:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.398523
- Title: Can LLMs Address Mental Health Questions? A Comparison with Human Therapists
- Title(参考訳): LLMはメンタルヘルスの問題に対処できるか? : セラピストとの比較
- Authors: Synthia Wang, Yuwei Cheng, Austin Song, Sarah Keedy, Marc Berman, Nick Feamster,
- Abstract要約: 実際の患者の質問に対して,ChatGPT,Gemini,Llamaによるセラピストによる回答を比較検討した。
LLMはより長く、より読みやすく、よりリッチな反応をより肯定的な声調で生成し、セラピストの反応は第一人称で書かれることが多かった。
- 参考スコア(独自算出の注目度): 9.025403092262293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Limited access to mental health care has motivated the use of digital tools and conversational agents powered by large language models (LLMs), yet their quality and reception remain unclear. We present a study comparing therapist-written responses to those generated by ChatGPT, Gemini, and Llama for real patient questions. Text analysis showed that LLMs produced longer, more readable, and lexically richer responses with a more positive tone, while therapist responses were more often written in the first person. In a survey with 150 users and 23 licensed therapists, participants rated LLM responses as clearer, more respectful, and more supportive than therapist-written answers. Yet, both groups of participants expressed a stronger preference for human therapist support. These findings highlight the promise and limitations of LLMs in mental health, underscoring the need for designs that balance their communicative strengths with concerns of trust, privacy, and accountability.
- Abstract(参考訳): メンタルヘルスへの限られたアクセスは、大きな言語モデル(LLM)を利用したデジタルツールや会話エージェントの使用を動機付けてきたが、その品質と受容性は未定である。
本研究は、ChatGPT、Gemini、Llamaが生成した患者に対するセラピストによる反応を実際の患者への質問に対して比較したものである。
テキスト分析の結果、LSMはより長く、より読みやすく、よりリッチな反応をより肯定的な声調で生成し、セラピストの反応は第一人者の方がより多く書かれていた。
150名のユーザと23名のライセンスを受けたセラピストによる調査では、参加者はLLMの回答をセラピストによる回答よりも明確で、より尊敬され、より支持的であると評価した。
しかし、どちらのグループも、ヒトセラピストの支持を強く好んだ。
これらの知見は、メンタルヘルスにおけるLLMの約束と限界を強調し、信頼、プライバシー、説明責任の懸念とコミュニケーションの強さのバランスをとるデザインの必要性を強調している。
関連論文リスト
- Reframe Your Life Story: Interactive Narrative Therapist and Innovative Moment Assessment with Large Language Models [72.36715571932696]
物語療法は、個人が問題のある人生の物語を代替品の力に変えるのに役立つ。
現在のアプローチでは、特殊精神療法ではリアリズムが欠如しており、時間とともに治療の進行を捉えることができない。
Int(Interactive Narrative Therapist)は、治療段階を計画し、反射レベルを誘導し、文脈的に適切な専門家のような反応を生成することによって、専門家の物語セラピストをシミュレートする。
論文 参考訳(メタデータ) (2025-07-27T11:52:09Z) - "It Listens Better Than My Therapist": Exploring Social Media Discourse on LLMs as Mental Health Tool [1.223779595809275]
大きな言語モデル(LLM)は、会話の流布、共感シミュレーション、可用性の新機能を提供する。
本研究では,1万件以上のTikTokコメントを分析し,LLMをメンタルヘルスツールとして利用する方法について検討した。
その結果、コメントの20%近くが個人利用を反映しており、これらのユーザーは圧倒的に肯定的な態度を示している。
論文 参考訳(メタデータ) (2025-04-14T17:37:32Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Can AI Relate: Testing Large Language Model Response for Mental Health Support [23.97212082563385]
大型言語モデル(LLM)はすでにニューヨーク・ラングーン、ダナ・ファーバー、NHSなどの病院システムで臨床使用のために試験されている。
精神医療の自動化に向けて, LLM 反応が有効かつ倫理的な道筋であるか否かを評価するための評価枠組みを開発する。
論文 参考訳(メタデータ) (2024-05-20T13:42:27Z) - A Novel Nuanced Conversation Evaluation Framework for Large Language Models in Mental Health [42.711913023646915]
大規模言語モデル(LLM)のニュアンス会話能力を評価するための新しい枠組みを提案する。
そこで我々は,心理療法の会話分析文献を用いた文献から開発された,一連の定量的指標を開発した。
GPTモデルやLlamaモデルを含むいくつかの人気のあるフロンティアLCMを、検証されたメンタルヘルスデータセットを通じて評価するために、当社のフレームワークを使用します。
論文 参考訳(メタデータ) (2024-03-08T23:46:37Z) - A Computational Framework for Behavioral Assessment of LLM Therapists [7.665475687919995]
ChatGPTのような大規模言語モデル(LLM)は、精神的な健康問題に対処するためのセラピストとしての使用に対する関心が高まっている。
LLMセラピストの会話行動を体系的に評価するための概念実証フレームワークBOLTを提案する。
論文 参考訳(メタデータ) (2024-01-01T17:32:28Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
大規模言語モデル(LLM)の多様な心理学的側面を評価するためのフレームワーク「サイコベンチ」を提案する。
サイコベンチはこれらの尺度を、性格特性、対人関係、モチベーションテスト、感情能力の4つのカテゴリーに分類する。
我々は、安全アライメントプロトコルをバイパスし、LLMの本質的な性質をテストするためにジェイルブレイクアプローチを採用している。
論文 参考訳(メタデータ) (2023-10-02T17:46:09Z) - Inducing anxiety in large language models can induce bias [47.85323153767388]
我々は、確立された12の大規模言語モデル(LLM)に焦点を当て、精神医学でよく用いられる質問紙に答える。
以上の結果から,最新のLSMの6つが不安アンケートに強く反応し,人間に匹敵する不安スコアが得られた。
不安誘発は、LSMのスコアが不安アンケートに影響を及ぼすだけでなく、人種差別や老化などの偏見を測る以前に確立されたベンチマークにおいて、それらの行動に影響を及ぼす。
論文 参考訳(メタデータ) (2023-04-21T16:29:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。