論文の概要: An End to End Edge to Cloud Data and Analytics Strategy
- arxiv url: http://arxiv.org/abs/2509.12296v1
- Date: Mon, 15 Sep 2025 16:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:52.69712
- Title: An End to End Edge to Cloud Data and Analytics Strategy
- Title(参考訳): クラウドデータと分析戦略の終了
- Authors: Vijay Kumar Butte, Sujata Butte,
- Abstract要約: 本稿では、クラウドデータと分析戦略に対するエンド・ツー・エンドのセキュアなエッジを提供する。
実際の実装を実現するため、デバイス層、エッジ層、クラウド層のためのリファレンスアーキテクチャを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an exponential growth of connected Internet of Things (IoT) devices. These have given rise to applications that rely on real time data to make critical decisions quickly. Enterprises today are adopting cloud at a rapid pace. There is a critical need to develop secure and efficient strategy and architectures to best leverage capabilities of cloud and edge assets. This paper provides an end to end secure edge to cloud data and analytics strategy. To enable real life implementation, the paper provides reference architectures for device layer, edge layer and cloud layer.
- Abstract(参考訳): モノのインターネット(IoT)デバイスは指数関数的に成長している。
これらは、重要な決定を素早く行うためにリアルタイムデータに依存するアプリケーションを生み出しました。
今日の企業は、クラウドを急速に採用している。
クラウドとエッジアセットの能力を最大限活用するために、セキュアで効率的な戦略とアーキテクチャを開発する必要がある。
本稿では、クラウドデータと分析戦略に対するエンド・ツー・エンドのセキュアなエッジを提供する。
実際の実装を実現するため、デバイス層、エッジ層、クラウド層のためのリファレンスアーキテクチャを提供する。
関連論文リスト
- Designing a Layered Framework to Secure Data via Improved Multi Stage Lightweight Cryptography in IoT Cloud Systems [1.5803208833562954]
本稿では,IoTクラウドシステムの軽量暗号化向上を目的とした,多層ハイブリッドセキュリティ手法を提案する。
提案するフレームワークは3つのコアレイヤで構成されている。(1)Hyperledger Fabric、Enc-Block、およびハイブリッドECDSA-ZSSスキームを統合して、暗号化速度、スケーラビリティ、計算コストを向上するH.E.EZ Layer、(2)Credential Management Layerがデータの信頼性と信頼性を独立して検証する、(3)トラフィックオーバーヘッドの低減と動的ワークロード間のパフォーマンスの最適化を目的としたTime and Auditing Layerである。
論文 参考訳(メタデータ) (2025-09-01T18:53:20Z) - Building Castles in the Cloud: Architecting Resilient and Scalable Infrastructure [0.0]
本論文では,クラウド環境内におけるコンテキスト設計に必要な重要な対策について考察する。
レプリケーションサーバ、フォールトトレランス、ディザスタバックアップ、高可用性のためのロードバランシングの必要性について検討している。
論文 参考訳(メタデータ) (2024-10-29T04:56:34Z) - Towards Confidential Computing: A Secure Cloud Architecture for Big Data
Analytics and AI [0.0]
クラウドコンピューティングは、ビッグデータ分析と人工知能のための実行可能なソリューションになっている。
バイオメディカルリサーチのような特定の分野におけるデータセキュリティは、クラウドに移行する際の大きな懸念事項である。
論文 参考訳(メタデータ) (2023-05-28T16:08:44Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Privacy-Preserving Cloud Computing: Ecosystem, Life Cycle, Layered
Architecture and Future Roadmap [0.0]
プライバシ保護型クラウドコンピューティングに関する調査論文は、関連する分野における今後の研究の道を開く上で有効である。
本稿では,階層型アーキテクチャとライフサイクル,プライバシ保護クラウドシステムのためのエコシステムを確立することで,既存のトレンドを識別する上で有効である。
論文 参考訳(メタデータ) (2022-04-23T18:47:26Z) - BigBird: Big Data Storage and Analytics at Scale in Hybrid Cloud [0.0]
本稿では,Google Cloud PlatformのBigQueryを用いて,スケーラブルなビッグデータストレージと分析管理フレームワークを設計するためのアプローチを紹介する。
この記事では、Google Cloud Platformのフレームワーク実装について論じるが、主要なクラウドプロバイダすべてに簡単に適用できる。
論文 参考訳(メタデータ) (2022-03-22T05:42:46Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
本稿では,Huawei Cloudのエッジクラウド共同プロトタイプであるAuto-Splitの技法と技術実践について述べる。
私たちの知る限りでは、Deep Neural Network(DNN)分割機能を提供する既存の産業製品はありません。
論文 参考訳(メタデータ) (2021-08-30T08:03:29Z) - Reproducible Performance Optimization of Complex Applications on the
Edge-to-Cloud Continuum [55.6313942302582]
エッジ・ツー・クラウド・コンティニュム上でのリアルタイムアプリケーションの最適化を支援する手法を提案する。
提案手法は, 制御されたテストベッド環境において, その動作を理解するための厳密な構成解析に頼っている。
当社の方法論はEdge-to-Cloud Continuumの他のアプリケーションに一般化することができる。
論文 参考訳(メタデータ) (2021-08-04T07:35:14Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。