論文の概要: Zero-shot Graph Reasoning via Retrieval Augmented Framework with LLMs
- arxiv url: http://arxiv.org/abs/2509.12743v1
- Date: Tue, 16 Sep 2025 06:58:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:52.933015
- Title: Zero-shot Graph Reasoning via Retrieval Augmented Framework with LLMs
- Title(参考訳): LLMを用いた検索フレームワークによるゼロショットグラフ推論
- Authors: Hanqing Li, Kiran Sheena Jyothi, Henry Liang, Sharika Mahadevan, Diego Klabjan,
- Abstract要約: 検索型拡張フレームワーク(GRRAF)を用いた新しい学習不要なグラフ推論手法を提案する。
GRRAFは、大規模な言語モデル(LLM)のコード生成機能とともに、検索拡張生成(RAG)を活用して、幅広いグラフ推論タスクに対処する。
GraphInstructデータセットの実験的評価により、ほとんどのグラフ推論タスクにおいて、GRRAFが100%の精度を達成することが明らかになった。
- 参考スコア(独自算出の注目度): 15.558119182035995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new, training-free method, Graph Reasoning via Retrieval Augmented Framework (GRRAF), that harnesses retrieval-augmented generation (RAG) alongside the code-generation capabilities of large language models (LLMs) to address a wide range of graph reasoning tasks. In GRRAF, the target graph is stored in a graph database, and the LLM is prompted to generate executable code queries that retrieve the necessary information. This approach circumvents the limitations of existing methods that require extensive finetuning or depend on predefined algorithms, and it incorporates an error feedback loop with a time-out mechanism to ensure both correctness and efficiency. Experimental evaluations on the GraphInstruct dataset reveal that GRRAF achieves 100% accuracy on most graph reasoning tasks, including cycle detection, bipartite graph checks, shortest path computation, and maximum flow, while maintaining consistent token costs regardless of graph sizes. Imperfect but still very high performance is observed on subgraph matching. Notably, GRRAF scales effectively to large graphs with up to 10,000 nodes.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)のコード生成機能と並行して,検索拡張生成(RAG)を利用した検索拡張フレームワーク(GRRAF)によるグラフ推論を提案する。
GRRAFでは、ターゲットグラフはグラフデータベースに格納され、LCMは必要な情報を取得する実行可能なコードクエリを生成するように促される。
このアプローチは、広範囲な微調整や事前定義されたアルゴリズムに依存する既存の手法の限界を回避し、エラーフィードバックループとタイムアウト機構を組み込んで、正確性と効率の両立を保証する。
GraphInstructデータセットの実験的評価によると、GCRAFは、サイクル検出、二部グラフチェック、最短経路計算、最大フローを含む、ほとんどのグラフ推論タスクにおいて100%の精度を達成し、グラフのサイズに関わらず一貫したトークンコストを維持する。
サブグラフマッチングでは、不完全だが、まだ非常に高い性能が観察されている。
特に、GRRAFは最大10,000ノードの巨大なグラフに効果的にスケールする。
関連論文リスト
- GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning [13.481673780508215]
GRAILは、検索強化推論のための大規模グラフと相互作用するように設計されたフレームワークである。
GRAILは知識グラフ問合せデータセットの平均精度を21.01%改善し、F1改善を22.43%改善する。
論文 参考訳(メタデータ) (2025-08-07T15:34:41Z) - GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval [3.792463570467098]
GraphRunnerは、新しいグラフベースの検索フレームワークで、計画、検証、実行の3つの異なる段階で動作する。
推論エラーを著しく低減し、実行前に幻覚を検出する。
GRBenchデータセットによる評価は、GraphRunnerが既存のアプローチを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2025-07-11T18:10:01Z) - E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness [15.829377965705746]
本稿では,グラフベースのRAGフレームワークであるE2GraphRAGを提案する。
E2GraphRAGはGraphRAGの最大10倍のインデックス化を実現し、LightRAGの100倍の高速化を実現している。
論文 参考訳(メタデータ) (2025-05-30T05:27:40Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented Generation (RAG)は、大規模な言語モデルに対して、外部およびプライベートコーパスへのアクセスを許可する。
現在のグラフベースのRAGアプローチは、グラフ構造の設計をほとんど優先順位付けしない。
不適切な設計のグラフは、多様なグラフアルゴリズムのシームレスな統合を妨げるだけでなく、ワークフローの不整合をもたらす。
異種グラフ構造を導入したグラフ中心のフレームワークであるNodeRAGを提案する。
論文 参考訳(メタデータ) (2025-04-15T18:24:00Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [88.4320775961431]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。