論文の概要: Textarium: Entangling Annotation, Abstraction and Argument
- arxiv url: http://arxiv.org/abs/2509.13191v1
- Date: Tue, 16 Sep 2025 15:46:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:53.158228
- Title: Textarium: Entangling Annotation, Abstraction and Argument
- Title(参考訳): Textarium: アノテーション、抽象化、引数
- Authors: Philipp Proff, Marian Dörk,
- Abstract要約: Textariumは、テキストの解釈中にアノテーション、抽象化、議論を接続するWebベースの環境である。
我々は,解釈過程を透明化し,デジタル物語の中で共有可能にする読み書き手法を開発した。
- 参考スコア(独自算出の注目度): 2.2344764434954256
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a web-based environment that connects annotation, abstraction, and argumentation during the interpretation of text. As a visual interface for scholarly reading and writing, Textarium combines human analysis with lightweight computational processing to bridge close and distant reading practices. Readers can highlight text, group keywords into concepts, and embed these observations as anchors in essays. The interface renders these interpretive actions as parameterized visualization states. Through a speculative design process of co-creative and iterative prototyping, we developed a reading-writing approach that makes interpretive processes transparent and shareable within digital narratives.
- Abstract(参考訳): 本稿では,テキストの解釈中にアノテーション,抽象化,議論を接続するWebベースの環境を提案する。
学術的な読み書きのためのビジュアルインターフェースとして、Textariumは人間の分析と軽量な計算処理を組み合わせて、近距離および遠距離の読み書きをブリッジする。
読者はテキストをハイライトし、概念にキーワードをグループ化し、これらの観察結果をエッセイにアンカーとして埋め込むことができる。
インタフェースは、これらの解釈アクションをパラメータ化された可視化状態として表現する。
本研究では,共創造的かつ反復的なプロトタイピングの投機的設計プロセスを通じて,解釈的プロセスを透過的かつデジタル物語内で共有可能なものにする読み書き手法を開発した。
関連論文リスト
- ConText: Driving In-context Learning for Text Removal and Segmentation [59.6299939669307]
本稿では,視覚的インコンテキスト学習パラダイムを光学的文字認識タスクに適用する最初の研究について述べる。
画像除去・分離方式のタスクチェイン・コンポジトリを提案する。
また、連鎖したプロンプトパターンを潜在クエリ表現に統合するコンテキスト認識アグリゲーションも導入する。
論文 参考訳(メタデータ) (2025-06-04T10:06:32Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
我々は、視覚・言語モデルの機能を活用し、文脈内感情分類を強化する。
まず、VLLMに対して、視覚的文脈に関連して、被験者の明らかな感情を自然言語で記述するように促す。
第二に、記述は視覚入力とともに、トランスフォーマーベースのアーキテクチャのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-04-10T15:09:15Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
テキスト・ツー・イメージ拡散技術は、テキスト記述から高品質な画像を生成する素晴らしい能力を示している。
そこで本研究では,オープン語彙を応用した最先端拡散モデルを用いて,多スケールのテキスト・視覚的特徴を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-29T07:59:07Z) - Im-Promptu: In-Context Composition from Image Prompts [10.079743487034762]
視覚刺激の構成可能な要素に対して,類似推論がコンテキスト内合成を可能にするか否かを検討する。
我々はIm-Promptuを使って、ベクトル表現、パッチ表現、オブジェクトスロットなど、さまざまなレベルの構成性のエージェントを訓練する。
本実験は,学習された構成規則を未知の領域に拡張する非構成的表現を用いて,外挿能力と構成性の程度とのトレードオフを明らかにする。
論文 参考訳(メタデータ) (2023-05-26T21:10:11Z) - Let the Chart Spark: Embedding Semantic Context into Chart with
Text-to-Image Generative Model [7.587729429265939]
画像視覚化は、データとセマンティックコンテキストを視覚表現にシームレスに統合する。
本稿では,テキストから画像への生成モデルに基づく意味コンテキストをグラフに組み込む新しいシステムであるChartSparkを提案する。
本研究では,テキストアナライザ,編集モジュール,評価モジュールを統合したインタラクティブなビジュアルインタフェースを開発し,画像視覚化の生成,修正,評価を行う。
論文 参考訳(メタデータ) (2023-04-28T05:18:30Z) - Holistic Visual-Textual Sentiment Analysis with Prior Models [64.48229009396186]
本稿では,頑健な視覚・テキスト感情分析を実現するための総合的手法を提案する。
提案手法は,(1)感情分析のためのデータから特徴を直接学習する視覚テキストブランチ,(2)選択された意味的特徴を抽出する事前学習された「専門家」エンコーダを備えた視覚専門家ブランチ,(3)暗黙的に視覚テキスト対応をモデル化するCLIPブランチ,(4)多モード特徴を融合して感情予測を行うBERTに基づくマルチモーダル特徴融合ネットワークの4つの部分から構成される。
論文 参考訳(メタデータ) (2022-11-23T14:40:51Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
本稿では,シーンテキストを効果的に表現できる弱教師付き事前学習手法を提案する。
本ネットワークは,画像エンコーダと文字認識型テキストエンコーダから構成され,視覚的特徴とテキスト的特徴を抽出する。
実験により、事前訓練されたモデルは、重みを他のテキスト検出やスポッティングネットワークに転送しながら、Fスコアを+2.5%、+4.8%改善することが示された。
論文 参考訳(メタデータ) (2022-03-08T08:10:45Z) - Constellation: Learning relational abstractions over objects for
compositional imagination [64.99658940906917]
静的な視覚シーンのリレーショナル抽象化を学習するネットワークであるConstellationを紹介する。
この研究は、視覚的関係を明確に表現し、それらを複雑な認知手続きに使用するための第一歩である。
論文 参考訳(メタデータ) (2021-07-23T11:59:40Z) - TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between
Corpora [14.844685568451833]
TextEssenceは、埋め込みを用いたコーポラの比較分析を可能にするインタラクティブなシステムです。
TextEssenceには、軽量なWebベースのインターフェイスに、ビジュアル、隣り合わせ、および類似性ベースの組み込み分析モードが含まれています。
論文 参考訳(メタデータ) (2021-03-19T21:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。