論文の概要: A Scenario-Driven Cognitive Approach to Next-Generation AI Memory
- arxiv url: http://arxiv.org/abs/2509.13235v1
- Date: Tue, 16 Sep 2025 16:43:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:53.179254
- Title: A Scenario-Driven Cognitive Approach to Next-Generation AI Memory
- Title(参考訳): シナリオ駆動型認知アプローチによる次世代AIメモリ
- Authors: Linyue Cai, Yuyang Cheng, Xiaoding Shao, Huiming Wang, Yong Zhao, Wei Zhang, Kang Li,
- Abstract要約: COLMAは認知シナリオ、メモリプロセス、記憶機構を結合的な設計に統合する新しいフレームワークである。
生涯学習と人間のような推論が可能なAIシステムの開発のための構造化された基盤を提供する。
- 参考スコア(独自算出の注目度): 12.798608799338275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As artificial intelligence advances toward artificial general intelligence (AGI), the need for robust and human-like memory systems has become increasingly evident. Current memory architectures often suffer from limited adaptability, insufficient multimodal integration, and an inability to support continuous learning. To address these limitations, we propose a scenario-driven methodology that extracts essential functional requirements from representative cognitive scenarios, leading to a unified set of design principles for next-generation AI memory systems. Based on this approach, we introduce the \textbf{COgnitive Layered Memory Architecture (COLMA)}, a novel framework that integrates cognitive scenarios, memory processes, and storage mechanisms into a cohesive design. COLMA provides a structured foundation for developing AI systems capable of lifelong learning and human-like reasoning, thereby contributing to the pragmatic development of AGI.
- Abstract(参考訳): 人工知能が人工知能(AGI)へと進化するにつれ、堅牢で人間的なメモリシステムの必要性がますます顕在化しつつある。
現在のメモリアーキテクチャは、適応性に制限があり、マルチモーダル統合が不十分で、継続的な学習ができないことがしばしばある。
これらの制約に対処するため、我々は、代表的な認知シナリオから重要な機能要件を抽出し、次世代AIメモリシステムの設計原則を統一するシナリオ駆動手法を提案する。
このアプローチに基づいて,認知シナリオ,メモリプロセス,ストレージ機構を結合的な設計に統合する新しいフレームワークである,‘textbf{COgnitive Layered Memory Architecture(COLMA)’を導入する。
COLMAは、生涯学習と人間のような推論が可能なAIシステムの開発のための構造化された基盤を提供し、それによってAGIの実用的発展に寄与する。
関連論文リスト
- Contextual Memory Intelligence -- A Foundational Paradigm for Human-AI Collaboration and Reflective Generative AI Systems [0.0]
本稿では,知的システム構築のための新しいパラダイムとして,コンテキストメモリインテリジェンス(CMI)を紹介する。
CMIは、メモリを長手コヒーレンス、説明可能性、責任ある意思決定に必要な適応的な基盤として再配置する。
これにより、人間とAIのコラボレーション、生成的AI設計、組織のレジリエンスが向上する。
論文 参考訳(メタデータ) (2025-05-28T18:59:16Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
大規模な言語モデルのような現在のAIシステムは、いまだに解体され続けており、物理的に世界と関わりが持てない。
この課題の核心は、人間のような適応性を持つエンボディエージェントを駆動するために設計された中枢知能システムであるNeural Brain(ニューラル・ブレイン)の概念である。
本稿では,2つの基本的な課題に対処する,エンボディエージェントのニューラルブレインの統一的枠組みを提案する。
論文 参考訳(メタデータ) (2025-05-12T15:05:34Z) - Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems [3.764721243654025]
現在のアプローチは、タスク固有のパフォーマンスを改善するが、継続的で適応性があり、一般化された学習を可能にするには不十分なモデルパラメータの拡張に大きく依存している。
本稿では、連続学習と神経科学に触発されたAIの現状を概観し、脳のような学習機構をエッジ展開に統合したパーソナライズされたAGIのための新しいアーキテクチャを提案する。
これらの洞察に基づいて、我々は、相補的な高速かつスローな学習モジュール、シナプス的自己最適化、デバイス上の寿命適応をサポートするためのメモリ効率のモデル更新を特徴とするAIアーキテクチャの概要を述べる。
論文 参考訳(メタデータ) (2025-04-27T16:10:17Z) - Cognitive AI framework: advances in the simulation of human thought [0.0]
Human Cognitive Simulation Frameworkは、人間の認知能力を人工知能システムに統合する大きな進歩を表している。
短期記憶(会話コンテキスト)、長期記憶(対話コンテキスト)、高度な認知処理、効率的な知識管理を融合することにより、コンテキストコヒーレンスと永続的なデータストレージを確保する。
このフレームワークは、継続的学習アルゴリズム、持続可能性、マルチモーダル適応性に関する将来の研究の基礎を築き、Cognitive AIを新興分野におけるトランスフォーメーションモデルとして位置づけている。
論文 参考訳(メタデータ) (2025-02-06T17:43:35Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。